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1 Introduction
Large Language Models (LMs) have shown numerous successes in a variety of natural language
tasks, such as question answering and dialogue [6, 12]. However, the knowledge internalized in
their parameters can sometimes be inaccurate, incomplete, or outdated, which leads them to generate
outputs that are factually incorrect although they appear plausible. This problem is widely known
as hallucination or confabulation [13], and it poses a substantial risk of spreading misinformation,
potentially misleading users who rely on the information, especially in real-world production settings.

Alternatively, there exists plenty of external knowledge sources that we can use in order to complement
the knowledge of LMs. However, this knowledge rarely stands alone; rather it gains more depth and
meaning when it is interconnected. For example, considering two entities "Steve Jobs" and "Tim
Cook" in isolation offers limited insight. Yet, when they are linked with the context of Apple Inc., such
as their roles as CEOs of Apple Inc., we can gain a more comprehensive and profound understanding.
To model such a large-scale interconnected knowledge, a graph is a commonly used data structure that
can denote how everything is connected to everything else with nodes and edges. Also, to leverage
this structured graph data, we typically use Graph Neural Networks (GNNs) [7], which represent each
node by iteratively aggregating the features from its neighboring nodes. However, existing GNNs are
still suboptimal to represent diverse real-world graph structures, which sometimes hinders us from
directly utilizing the external graph-structured knowledge to complement the knowledge of LMs.

In my Ph.D. study, in order to tackle the critical limitation of LMs in generating factually incorrect
outputs, I propose several methods [9, 10, 5] that augment LMs by injecting the knowledge from the
graph-structured knowledge; and, in order to inject the right source of the knowledge effectively, I
propose a series of fundamental works [4, 8, 2, 1, 11, 3] that can represent and retrieve the graph-
structured knowledge and data. In particular, in my previous works on learning graph-structured
data, I devise novel methods that can represent edges and entire graphs as well as unseen entities that
evolve over time and facts that consist of two entities and one relation, to overcome challenges of
existing GNNs that are limited to representing mostly the static nodes. Also, I propose new learning
strategies for GNNs, which can either represent the graph-structured data without any labels on it
based on the self-supervision from graph distances, or train the distributed subgraphs over multiple
clients without sharing their data based on the graph-structure-aware federated learning. After that,
by leveraging my previous methods on representing graph-structured knowledge, I further contribute
to developing knowledge-augmented LMs. Specifically, I propose multiple techniques that inject not
only the represented knowledge from Knowledge Graphs (KGs) into the input or intermediate layers
of LMs, but also the verbalized knowledge retrieved from KGs into large LMs via prompting.

While I identify and address the challenging problems of representing the graph-structured knowledge
and data with novel GNNs, and then augmenting the LMs based on the representation, retrieval, and
injection of the knowledge from KGs, there still exist remaining challenges to be tackled. Specifically,
while LMs can contain a vast amount of general knowledge in their parameters, the text generated
from LMs may not be specific and relevant to the individual users since they cannot capture their
personal knowledge. Yet, the users may have particular experiences or interests in some concepts,
topics, or subjects (e.g., Apple Inc.), which are substantially worthwhile to be reflected in the
generated texts. Therefore, I am planing to work on the personalization of LMs by augmenting them
with the user’s personal knowledge. Also, despite the successes of knowledge-augmented LMs in
generating more factually correct outputs, they are still suboptimal since they may fail to retrieve
the relevant knowledge to the given query or may not faithfully reflect the injected knowledge in the
output texts. In order to overcome these, I am planning to develop a verification method that can
detect errors in both knowledge retrieval and answer generation but also can rectify them if identified.
The comprehensive overview of my previous and potential research projects is visualized in Figure 1.
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Figure 1: Overview of previous and future research, which includes learning the graph-structured
knowledge and data, and then retrieving and injecting them to augment large language models with
the knowledge verification and personalization methods for real-world natural language applications.

2 Previous Research Experience
In this section, I explain my previous works on representation learning for graph-structured knowledge
and data, which aim to tackle several limitations of GNNs in handling real-world graph structures, and
then introduce my previous efforts to overcome challenges of LMs in memorizing facts by retrieving
and injecting the pertinent knowledge to queries based on my structured knowledge learning methods.

2.1 Learning on Graph-Structured Knowledge and Data
I first discuss a series of my previous methods on representing graph-structured knowledge and data.
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Figure 2: Graph Extrapolation Network (GEN) [4]. (Left) An illustration of unseen entities and
their out-of-graph link prediction problem with other seen and unseen entities. (Right) An illustration
of a meta-learning framework to represent unseen entities first and then predict links for them.

Representation Learning on Unseen Entities In many real-world knowledge graphs, unseen
entities continuously emerge while having relationships with other entities (Figure 2, Left). However,
existing GNNs, which are trained and evaluated over the same set of seen entities, are suboptimal
to handle such emerging entities. To this end, I first introduce an out-of-graph link prediction
problem [4], whose goal is to represent unseen nodes to incorporate them onto the existing graph with
seen nodes, by predicting links between seen and unseen as well as unseen entities themselves. Then,
I tackle this problem with a novel meta-learning framework [4], which meta-learns any GNNs to
extrapolate the knowledge from seen to unseen entities (Figure 2, Right). I validate the effectiveness
of the proposed GEN on multiple knowledge graphs, showing its efficacy in handling unseen entities.
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Figure 3: Edge HyperGraph Neural Network (EHGNN) [8]. Dual Hypergraph Transformation
(DHT) transforms the edges of the original graph as the nodes of the dual hypergraph, which allows
us to represent edges as nodes over the dual hypergraph with any existing graph neural networks.

Representation Learning on Edges In graph-structured knowledge and data, edges play a pivotal
role. For example, in knowledge graphs, edges themselves carry semantic meaning that provides
a more profound understanding of two linked entities. However, existing GNNs focus mostly on
representing nodes, and consider edges as mere paths for sharing information between nodes. To
tackle this limitation, I propose to transform the edges of the original graph to nodes of the hypergraph
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and nodes to hyperedges with dual hypergraph transformation [8] (Figure 3). After that, we can use
any existing GNNs to represent nodes of the dual hypergraph, for learning the representations of
edges of the original graph. The proposed EHGNN is applicable to any graph structure, and I validate
it on node and graph classification tasks as well as graph reconstruction and generation tasks.

Direct Fact Retrieval

Q: Where was Michael F. Phelps born?

[Michael Phelps, 

Place of birth, Baltimore]

Michael 

Phelps
Baltimore

Place_of_birth

Michael 

Phelps
Baltimore

Sport

Facts in a Knowledge Graph

Nicole 

Johnson
Model

Occupation

…

A representation space 

by one language model

Direct Retrieval without Entity Linking

Figure 4: Direct Fact Retrieval (DiFaR) [2],
which represents and retrieves facts based on
their similarities to input queries, using LMs.

Representation Learning for Fact Retrieval To
retrieve facts from KGs, which consist of two entities
and one relation, for downstream tasks (e.g., question
answering), existing works typically perform three se-
quential steps: entity detection, entity disambiguation,
and relation classification, which is yet complex and
suboptimal. Thus, I propose to represent each verbal-
ized fact with LMs [2], which enables us to retrieve
facts directly by calculating their representational sim-
ilarities with input queries (Figure 4). I demonstrate
the efficacy of the proposed DiFaR on fact retrieval.

A

B

C

D

E

F

G

X

Y

Z

(A) Graph Multiset         
      Transformers

Readout via Multiset Encoding

Graph 
Representation

A
B

C
D

E

F

G
𝑑 = 1

Global Graph Prediction

𝑑 = 2

Original

D
is

c
rim

in
a

to
r

Perturbed

Perturbed

Margin-based Distance

(B) Graph SSL
with Discrepancy

Community A Community B

(C) Personalized Subgraph FL

Collaboration on 

Each Community

Figure 5: (A) Graph Multiset Transformers (GMT) [1], which hierarchically represents the entire
graphs with multiset-based transformers. (B) Discrepancy-based Self-supervised LeArning (D-
SLA) [11], which learns discrepancy between graphs based on their edit distances to represent graphs
without labels, during self-supervised learning. (C) FEDerated Personalized sUBgraph learning
(FED-PUB) [3], which trains locally accessible distributed subgraphs by considering their community
structures, in order to jointly improve the personalized models working on interconnected subgraphs.

Representation Learning with Graph Pooling Some practical scenarios (e.g., graph classification
and retrieval) require obtaining the hierarchical or global representations of sub- and entire graphs
by summarizing representations of their nodes and edges. To this end, I propose the graph pooling
operator that can hierarchically learn the representations of entire graphs based on a novel multiset-
based transformer architecture [1], illustrated in Figure 5 (A). Further, I theoretically prove that the
proposed graph pooling, namely GMT, is as powerful as the Weisfeiler-Lehman graph isomorphism
test [14] in distinguishing graphs, and empirically show that GMT outperforms existing graph pooling
on graph classification, reconstruction, and generation tasks with high memory and time efficiency.

Strategies for Graph Representation Learning In some real-world scenarios, graph-structured
knowledge and data may not have labels for training or may be distributed over multiple local clients.
However, existing graph representation learning methods are suboptimal to handle such challenging
scenarios, and I propose two novel strategies to tackle them. In particular, to train GNNs without any
labeled data, I devise the pre-text task for graph-structured data, which learns the discrepancy between
graphs not only by discriminating real graphs from their perturbed graphs but also by directly learning
the graph edit distances between them over self-supervised learning [11], visualized in Figure 5 (B).
On the other hand, in order to train with multiple subgraphs that are locally accessible due to privacy
restrictions, I propose the personalized federated learning framework, which aims at promoting the
joint improvement of local subgraphs that belong to the same community by selectively utilizing the
knowledge across subgraphs from diverse communities [3], illustrated in Figure 5 (C). I demonstrate
the efficacy of my self-supervised learning (D-SLA) and federated learning (FED-PUB) methods on
node classification, link prediction, and graph classification tasks of various real-world graphs.

2.2 Knowledge-Augmented (Large) Language Models
In this subsection, I describe my previous methods on knowledge-augmented LMs to complement
their limited knowledge, where the knowledge is modeled by my proposed works in Subsection 2.1.

Knowledge-Augmented Language Model Modulation To inject the relevant graph-structured
knowledge into LMs, I first propose to modulate the intermediate representations of LMs with respect
to the KG representations [9]. Specifically, I first represent entities and relations in KGs, which are
associated with the input query (e.g., entities appear in the input text), based on GNNs. After that, I
propose to linearly scale and shift the intermediate representations of entities in LMs with the entity
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Figure 6: Knowledge-Augmented Language model Adaption (KALA) [9], which injects the
representations of entities from KGs into LMs by modulating the intermediate entity representations
of LMs via the Knowledge-conditioned Feature Modulation layer (KFM) that is interleaved in LMs.

representations from KGs, which I refer to as the Knowledge-conditioned Feature Modulation (KFM)
layer that is interleaved in LMs (See Figure 6). Then, I validate the proposed method, namely KALA,
on question answering and named entity recognition tasks, showing its effectiveness.
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Figure 7: SUbgraph Retrieval-augmented Generation (SURGE) [10], which consists of three
components. It first retrieves the subgraph relevant to the dialogue from KGs. Then, it encodes the
graph-structured information of the retrieved subgraph into the input text of the generator. Lastly, it
uses contrastive learning to enforce the model to generate a response consistent with the subgraph.

Knowledge-Augmented Language Models for Text Generation In contrast to the aforementioned
work that injects the knowledge implicitly into the representations of LMs, I also propose to explicitly
incorporate the graph-structured knowledge from KGs into the input text of LMs [10]. Specifically,
as shown in Figure 7, I retrieve the subgraph relevant to the input query by calculating similarities
between the representations of the input text from LMs and its associated facts from GNNs, and
then generate the response by injecting the retrieved facts in the LM input, where the retriever and
generator are jointly trained. Further, I propose the graph encoder to reflect the graph-structured
information in the text representation, but also the contrastive learning strategy to ensure similarities
between the text and its relevant subgraphs. I validate the proposed SURGE in generating responses
on dialogue tasks, showing they are more informative thanks to leveraging relevant facts from KGs.
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Figure 8: Knowledge-Augmented language
model PromptING (KAPING) [5], which
retrieves relevant facts to the query and aug-
ments LMs by injecting them as the prompt.

Knowledge-Augmented Large Language Model
Prompting Unlike smaller LMs, large LMs are ca-
pable of answering questions without fine-tuning. Yet,
they are still vulnerable to generating factually incor-
rect answers since they cannot store all the knowledge
in their parameters. To overcome this without further
training, I propose to augment large LMs with the
knowledge from KGs via prompting [5]. Specifically,
similar to the aforementioned two works, I first re-
trieve the relevant facts to the given query from KGs
and then directly append them in the input of LMs
along with the query, which is then forwarded to the
LMs to generate the correct answer (See Figure 8). I
validate the proposed Knowledge-Augmented language model PromptING (KAPING) on knowledge
graph question answering, showing it impressively improves the performance of various large LMs.

3 Ongoing and Future Research
My ongoing and future research is tackling more realistic and practical yet challenging problems that
arise when deploying large LMs in real-world scenarios, e.g., output validation and personalization.
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Figure 9: Concept of Knowledge-Augmented Language Model Verification, which not only
identifies knowledge retrieval and grounding errors but also rectifies the outputs if errors are detected.

Knowledge-Augmented LM Verification Knowledge-augmented LMs have achieved remarkable
success in generating factually correct outputs. Yet, they are still not reliable and rather problematic
to deploy in production, since the model may fail to retrieve the knowledge relevant to the given query
or the model may not faithfully reflect the retrieved knowledge in the generated text, which leads to
generating misinformation. To overcome these substantial challenges, I plan to build a verifier that
can detect such two types of errors based on the combination of question, knowledge, and answer
(See Figure 9). Moreover, I plan to further develop strategies that can rectify such two types of errors
if detected, by retrieving the knowledge and generating the output iteratively until making the correct.
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Figure 10: Concept of Personalized Knowl-
edge Augmented LMs, which extracts the
personal knowledge of individual users from
their interactions with devices, and augments
LMs with it for personalized text generation.

Personalized, Knowledge-Augmented LMs One
practical challenge of knowledge-augmented LMs is
that they do not reflect the personal knowledge and in-
terests of individual users when handling their queries.
To this end, as illustrated in Figure 10, I plan to extract
the personal knowledge of users from their interac-
tions with devices (e.g., search and browsing history)
and store it as unstructured memory and structured
knowledge graphs. After that, I augment LMs with the
extracted knowledge of users, which leads to generat-
ing outputs that reflect the user’s personal knowledge
and interests (e.g., providing information about Tim
Cook, if the user is interested in Apple Inc. and familiar with Steve Jobs but not with Tim Cook).

4 Conclusion
In this research statement, I introduced a series of my previous research on augmenting LMs with
graph-structured knowledge and data by representing, retrieving, and injecting them in innovative
and effective ways. As I move forward, my focus will be on improving knowledge-augmented LMs
by addressing more practical problems, which include the knowledge personalization of LMs for
individual users and the post hoc verification of LM outputs, at scale. I strongly hope that my previous
and ongoing researches will bring substantial advancements and practical benefits to the community.

References
[1] Jinheon Baek*, Minki Kang*, et al. Accurate learning of graph representations with graph multiset pooling. In ICLR, 2021.

[2] Jinheon Baek, Alham Fikri Aji, Jens Lehmann, and Sung Ju Hwang. Direct knowledge graph retrieval without entity linking. ACL, 2023.

[3] Jinheon Baek*, Wonyong Jeong*, et al. Personalized subgraph federated learning. ICML, 2023.

[4] Jinheon Baek et al. Learning to extrapolate knowledge: Transductive few-shot out-of-graph link prediction. NeurIPS, 2020.

[5] Jinheon Baek et al. Knowledge-augmented language model prompting for zero-shot knowledge graph question answering. NRLSE @ ACL, 2023.

[6] Tom Brown et al. Language models are few-shot learners. NeurIPS, 2020.

[7] William L. Hamilton. Graph representation learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, 2020.

[8] Jaehyeong Jo*, Jinheon Baek*, Seul Lee*, et al. Edge representation learning with hypergraphs. NeurIPS, 2021.

[9] Minki Kang*, Jinheon Baek*, et al. Kala: Knowledge-augmented language model adaptation. NAACL, 2022.

[10] Minki Kang*, Jin Myung Kwak*, Jinheon Baek*, et al. Knowledge-consistent dialogue generation with knowledge graphs. KRLM @ ICML, 2022.

[11] Dongki Kim*, Jinheon Baek*, et al. Graph self-supervised learning with accurate discrepancy learning. NeurIPS, 2022.

[12] OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

[13] Anna Rohrbach et al. Object hallucination in image captioning. In EMNLP, 2018.

[14] B. Yu. Weisfeiler and A. A. Leman. Reduction of a graph to a canonical form and an algebra arising during this reduction. 1968.

Research Statement, Jinheon Baek, 5 of 5


	Introduction
	Previous Research Experience
	Learning on Graph-Structured Knowledge and Data
	Knowledge-Augmented (Large) Language Models

	Ongoing and Future Research
	Conclusion

