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Abstract
While machine learning algorithms and models for graph-structured data have been actively studied, the
problems of handling new entities (nodes) and representing entire graphs remain challenging. My thesis
focuses on how to tackle such problematic issues on a graph. In other words, we develop methods for
representing unseen entities and entire graphs more accurately, summarized into two folds:

For the problem of representing unseen entities, we first introduce a realistic task of out-of-graph
link prediction that aims to predict missing links for unseen entities. Then, to tackle this, we propose a
transductive meta-learning framework that makes it possible to simulate the unseen during training. We
validate our method on benchmark datasets for knowledge graph completion and drug-drug interaction
prediction. The experimental results show that our method significantly outperforms existing baselines
on the out-of-graph link prediction task, due to its e�ectiveness in accurately representing unseen entities.

For the problem of representing entire graphs, we aim to embed di�erent graphs into distinct vectors.
To do so, we consider the graph encoding problem as a multiset encoding problem, which allows for
possibly repeating elements, since a graph may have redundant nodes. Then, over the multiset encoding
scheme, we propose a graph multiset transformer that captures interaction among nodes, while reducing
the size of the given graph, to obtain a compact yet entire graph representation. We theoretically prove
that our method is as powerful as the Weisfeiler-Lehman graph isomorphism test, but also empirically
show that it outperforms baselines on graph classification, reconstruction, and generation tasks.

We believe both of our approaches contribute to the optimal goal of accurate learning of real-world
graphs, often evolving with unseen nodes and having a large number of nodes to capture at once.

Keywords Machine Learning, Graph Neural Networks, Graph Representation Learning, Meta Learning,
Graph Pooling, Link Prediction, Graph Classification, Graph Reconstruction, Graph Generation
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Chapter 1. Introduction

A graph can express a rich interaction between elements, which is widely used to denote a large
number of interconnected systems, including but not limited to social science [1], physical system [2], and
knowledge base [3], with a set of objects and their relations. To deal with such graph-structured data
under an end-to-end learning scheme, graph neural networks (GNNs) have been proposed [4, 5], which
generally represent the nodes by aggregating the features of their neighborhoods. In spite of their sim-
plicity in representing nodes of the given graph, they have been broadly utilized for many graph-related
tasks, such as node classification [6], link prediction [7], travel-time prediction [8], recommendation [9],
to name a few.

However, despite such successes of graph neural networks, there are important remaining challenges
that hurt the accurateness of graph representation learning. For example, in a real-world scenario, graphs
often have an evolving nature, where new entities are consistently coming in with few links. Also, for
tasks requiring a representation of an entire graph or a subgraph (e.g., graph classification [10] and graph
retrieval [11]), we have to summarize the representation of multiple nodes. However, most of the existing
node-level GNNs are insu�cient to obtain accurate representations of emerging nodes and entire graphs.

Thus, in this thesis, we first focus on the problems of existing node-level GNNs for each task of the
unseen node representation and the entire graph representation. After that, to tackle those limitations,
we introduce two methods that can be easily coupled with existing node-level GNNs, yet make significant
performance gains from them.

Specifically, in Chapter 2, we focus on the challenges of evolving graphs, such as knowledge graph
and drug-drug interaction graph, where new entities emerge over time with few associated links to embed
them. Then, to formally define this observed challenge, we introduce a novel problem of few-shot out-
of-graph link prediction. After that, we solve the proposed problem with a transductive meta-learning
framework, where the model learns to represent unseen entities that are simulated from seen entities
during training, unlike the conventional learning scheme that cannot observe unseen at training. As
an architecture choice for the meta-learning framework, we use an existing message-passing scheme of
GNNs, thus showing that existing GNNs can accurately represent an unseen entity by extrapolating the
knowledge from its associated seen entities, only with a change of GNNs’ learning scheme.

On the other hand, in Chapter 3, we aim at obtaining a compact representation of an entire graph,
for which e�ectively summarizing a set of node representations obtained from node-level GNNs is an
important challenge. Notably, when representing an entire graph, one might further want to distinguish
two di�erent graphs in the representation space (i.e., obtaining di�erent representations from di�erent
graphs), thus we further aim at obtaining the graph representation that is as powerful as the Weisfeiler-
Lehman (WL) graph isomorphism test [12]. In order to satisfy those two requirements (i.e., summarizing
the whole node representations while distinguishing di�erent graphs), we propose a transformer-based
architecture that captures interaction among nodes, and then prove that it is at most as powerful as
the WL test. Our model is easily coupled with existing node-level GNNs, but significantly improves
the performance of existing GNNs on graph-level tasks (e.g., graph classification, reconstruction, and
generation) with high memory and time e�ciency.

Finally, in Chapter 4, we summarize the contributions and the potential directions of our work:
toward accurate learning of graph representations on all scales from nodes, to edges, to graphs.

1



This Chapter is based on the work that is published at NeurIPS 2020 [13].

Chapter 2. Accurate Learning of Unseen Node Representations

How do we handle emerging entities, which are common in evolving graphs such as knowledge
graphs, that are not seen during training? We provide the summary of the problem that we
tackle, the method that we propose, and the results that we obtain, in below.

Many practical graph problems, such as knowledge graph construction and drug-drug interac-
tion prediction, require to handle multi-relational graphs. However, handling real-world multi-
relational graphs with Graph Neural Networks (GNNs) is often challenging due to their evolving
nature, as new entities (nodes) can emerge over time. Moreover, newly emerged entities often have
few links, which makes the learning even more di�cult. Motivated by this challenge, we introduce
a realistic problem of few-shot out-of-graph link prediction, where we not only predict the links
between the seen and unseen nodes as in a conventional out-of-knowledge link prediction task but
also between the unseen nodes, with only few edges per node. We tackle this problem with a novel
transductive meta-learning framework which we refer to as Graph Extrapolation Networks (GEN).
GEN meta-learns both the node embedding network for inductive inference (seen-to-unseen) and
the link prediction network for transductive inference (unseen-to-unseen). For transductive link
prediction, we further propose a stochastic embedding layer to model uncertainty in the link
prediction between unseen entities. We validate our model on multiple benchmark datasets for
knowledge graph completion and drug-drug interaction prediction. The results show that our
model significantly outperforms relevant baselines for out-of-graph link prediction tasks.

2.1 Introduction

Graphs have a strong expressive power to represent structured data, as they can model data into a
set of nodes (objects) and edges (relations). To exploit the graph-structured data which works on a non-
Euclidean domain, several recent works propose graph-based neural architectures, referred to as Graph
Neural Networks (GNNs) [14, 6]. While early works mostly deal with simple graphs with unlabeled
edges, recently proposed relation-aware GNNs [3, 15] consider multi-relational graphs with labels and
directions on the edges. These multi-relational graphs expand the application of GNNs to more real-
world domains such as natural language understanding [16], modeling protein structure [17], drug-drug
interaction prediction [18], retrosynthesis planning [19], to name a few.

Among multi-relational graphs, Knowledge Graphs (KGs), which represent knowledge bases (KBs)
such as Freebase [20] and WordNet [21], receive the most attention. They represent entities as nodes and
relations among the entities as edges, in the form of a triplet: (head entity, relation, tail entity) (e.g.,
(Louvre museum, is located in, Paris)). Although knowledge graphs in general contain a huge amount of
triplets, they are well known to be highly incomplete [22]. Therefore, automatically completing knowledge
graphs, which is known as the link prediction task, is a practically important problem for KGs. Prior
works tackle this problem, i.e., inferring missing triplets, by learning embeddings of entities and relations
from existing triplets, and achieve impressive performances [23, 24, 25, 26, 27].

2
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Figure 2.1: Concept (Left): An illustration of Out-of-Graph link prediction for emerging entities. Blue
dotted arrows denote inferred relationships between seen and unseen entities, and red dotted arrows denote
inferred relationships between unseen entities. (Center): An illustration of our meta-learning framework for
the Out-of-Graph link prediction task. Orange arrows denote the support (training) set and green dotted arrows
denote the query (test) set. Visualization of embeddings (Right): Our transductive GEN embeds the unseen
entities on the manifold of seen entities, while the baseline [28] embeds the unseen entities o� the manifold.

Figure 2.2: Entity frequency distribution of
the NELL-995 knowledge graph dataset.

Despite such success, the link prediction for KGs in
real-world scenarios remains challenging for a couple of rea-
sons. First, knowledge graphs dynamically evolve over time,
rather than staying static. Shi and Weninger [29] report that
around 200 new entities emerge every day. Predicting links
on these emerging entities pose a new challenge, especially
when predicting the links between emerging (unseen) entities
themselves. Moreover, real-world KGs generally exhibit long-tail distributions, where a large portion of
the entities have only few triplets (See Figure 2.2). The embedding-based methods, however, usually as-
sume that a su�cient number of associative triplets exist for training, and cannot embed unseen entities.
Thus they are highly suboptimal for learning and inference on evolving real-world graphs.

Motivated by the limitations of existing approaches, we introduce a realistic problem of Few-Shot
Out-of-Graph (OOG) link prediction for emerging entities. In this task, we not only predict the links
between seen and unseen entities but also between the unseen entities themselves (Figure 2.1, left). To
this end, we propose a novel meta-learning framework for OOG link prediction, which we refer to as
Graph Extrapolation Networks (GENs) (Figure 2.1, center). GENs are meta-learned to extrapolate the
knowledge from seen to unseen entities, and transfer knowledge from entities with many to few links.

Specifically, given embeddings of the seen entities for a multi-relational graph, we meta-train two
GNNs to predict the links between seen-to-unseen, and unseen-to-unseen entities. The first GNN, induc-
tive GEN, learns to embed the unseen entities that are not observed, and predicts the links between seen
and unseen entities. The second GNN, transductive GEN, learns to predict the links not only between
seen and unseen entities, but also between unseen entities themselves. This transductive inference is
possible since our meta-learning framework can simulate the unseen entities during meta-training, while
they are unobservable in conventional learning schemes. Also, since link prediction for unseen entities
is inherently unreliable, which gets worse when few triplets are available for each entity, we learn the
distribution of unseen representations for stochastic embedding to account for the uncertainty. Further,
we apply a transfer learning strategy to model the long-tail distribution. These lead GEN to represent
the unseen entities that are well aligned with the seen entities (Figure 2.1, right).

We validate GENs for their OOG link prediction performance on three knowledge graph completion
datasets, namely FB15K-237 [20], NELL-995 [30], and WN18RR [25]. We also validate GENs for OOG
drug-drug interaction prediction task on DeepDDI [31] and BIOSNAP-sub [32] datasets. The experi-
mental results on five datasets show that our model significantly outperforms the baselines, even when

3



they are retrained from scratch with unseen entities considered as seen entities. Further analysis of
each component shows that both inductive and transductive layers of GEN help with the accurate link
prediction for OOG entities. In sum, our main contributions are summarized as follows:

• We tackle a realistic problem setting of few-shot out-of-graph link prediction, aiming to perform
link prediction not only between seen and unseen entities but also among unseen entities for multi-
relational graphs that exhibit long-tail distributions, where each entity has only few triplets.

• To tackle this problem, we propose a novel meta-learning framework, Graph Extrapolation Net-
work (GEN), which meta-learns the node embeddings for unseen entities, to obtain low error on link
prediction for both seen-to-unseen (inductive) and unseen-to-unseen (transductive) cases.

• We validate GEN for few-shot out-of-graph link prediction tasks on five benchmark datasets for
knowledge graph completion and drug-drug interaction prediction, on which it significantly
outperforms relevant baselines, even when they are retrained with the unseen entities.

2.2 Related Work

Graph Neural Network Existing Graph Neural Networks (GNNs) encode the nodes by aggregating
the features from the neighboring nodes, that use recurrent neural networks [33, 34], mean pooling with
layer-wise propagation rules [6, 35], learnable attention-weighted combinations of the features [36, 37],
to name a few. While most of the existing models work with simple undirected graphs, some recently
proposed models tackle the multi-relational graphs for their practical importance. Directed-GCN [16] and
Weighted-GCN [15] consider direction and relation types, respectively. Also, R-GCN [3] simultaneously
considers direction and relation types. Similarly, MPNN [38] uses the edge-conditioned convolution to
reflect the information on the edge types between nodes. Recently, Vashishth et al. [39] propose to
jointly embed nodes and relations in a multi-relational graph. Since our GEN is a general framework
for out-of-graph link prediction rather than a specific GNN architecture, it is compatible with any GNN
implementations for multi-relational graphs.

Meta Learning Meta-learning, whose objective is to generalize over the distribution of tasks, is an
essential approach for our few-shot out-of-graph link prediction framework, where we simulate the unseen
nodes with a subset of training nodes. To mention a few, metric-based approaches [40, 41] learn a shared
metric space to minimize the distance between correct and instance embeddings. On the other hand,
gradient-based approaches [42, 43] learn shared parameters for initialization, to generalize over diverse
tasks in a bi-level optimization framework. A few recent works consider meta-learning with GNNs, such
as Satorras and Estrach [44] and Liu et al. [45] propose to meta-learn the GNNs for few-shot image
classification, and Zhou et al. [46], Ding et al. [47] and Lan et al. [48] propose to meta-learn the GNNs
for few-shot node classification. Further, Meta-Graph [49] proposes to construct graphs over the seen
nodes, with only a small sample of known unlabeled edges.

Multi-relational Graph A popular application of multi-relation graphs is Knowledge Graph (KG)
completion. Previous methods for this problem can be broadly classified as translational distance
based [23, 50], semantic matching based [24, 51], convolutional neural network based [26, 25], and graph
neural network based methods [3, 27]. While they require a large number of training instances to embed
nodes and edges in a graph, many real-world graphs exhibit long-tail distributions. Few-shot relational

4



learning methods tackle this issue by learning few relations of seen entities [52, 53, 54]. Nonetheless, the
problem becomes more di�cult as real-world graphs have an evolving nature with new emerging entities.
Several models [55, 56] tackle this problem by utilizing extra information about the entities, such as their
textual description. Furthermore, some recent methods [57, 28, 58] propose to handle unseen entities in
an inductive manner, to generate embeddings for unseen entities without re-training the entire model
from scratch. However, since they can not simulate the unseen entities in the training phase, there are
some fundamental limitations on the generalization for handling actual unseen entities. On the other
hand, our method entirely tackles both of seen-to-unseen and unseen-to-unseen link prediction, under the
transductive meta-learning framework that simulates the unseen entities during training. Drug-Drug In-
teraction (DDI) prediction is another important real-world application of multi-relational graphs, where
the problem is to predict interactions between drugs. Recently, Zitnik et al. [18] and Ma et al. [59]
propose end-to-end GNNs to tackle this problem, which demonstrate comparatively better performances
over non-GNN methods [60, 61, 62].

2.3 Few-Shot Out-of-Graph Link Prediction

Our goal is to perform link prediction for emerging entities of multi-relational graphs, in which a
large portion of the entities have only few triplets associated with them. We begin with the definitions
of the multi-relational graph and the link prediction task, which we formalize in Definition 2.3.1 and
Definition 2.3.2 as follows:

Definition 2.3.1: Multi-relational Graph

Let E and R be two sets of entities and relations respectively. Then a link is defined as a triplet
(eh, r, et), where eh, et œ E are the head and the tail entity, and r œ R is a specific type of relation
between the head and tail entities. A multi-relational graph G is represented as a collection of
triplets. That is denoted as follows: G = {(eh, r, et)} ™ E ◊ R ◊ E.

Definition 2.3.2: Link Prediction

Link prediction refers to the task of predicting an unknown item of a triplet, when given two other
items. We consider both of the entity prediction and relation prediction tasks. Entity prediction
refers to the problem of predicting an unknown entity e ™ E, given the entity and the relation:
(eh, r, ?) or (?, r, et). Relation prediction refers to the problem of predicting an unknown relation
r ™ R, given the head and tail entities: (eh, ?, et).

Table 2.1: Score functions for multi-relational
graphs, where ü denotes concatenation.

Model Score Function Domain

TransE [23] ≠Îeh + r ≠ etÎ2 Knowledge Graph

DistMult [24] Èeh, r, etÍ Knowledge Graph

Linear [38] r(eh ü et) Drug Interaction

Link prediction for multi-relational graphs Link
prediction is essentially the problem of assigning high
scores to the true triplets, and therefore, many existing
methods use score function s(eh, r, et) to measure the score
of a given triplet, where the inputs depend on their respec-
tive embeddings (see Table 2.1). As a result, the objective
of the link prediction is to find the representation of triplet elements and the function parameters in a
parametric model case, which maximize the score of the true triplets. Which embedding methods to use
depends on their specific application domains. However, existing works mostly tackle the link prediction
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between seen entities that already exist in the given multi-relational graph. In this work, we tackle a
task of few-shot Out-of-Graph (OOG) link prediction formally defined in Definition 2.3.3 as follows:

Definition 2.3.3: Few-Shot Out-of-Graph Link Prediction

Given a graph G ™ E ◊ R ◊ E, an unseen entity is an entity e
Õ œ E Õ, where E fl E Õ = ÿ. Then, out-

of-graph link prediction is the problem of performing link prediction on (eÕ
, r, ?), (?, r, e

Õ), (eÕ
, ?, ẽ),

or (ẽ, ?, e
Õ), where ẽ œ (E fi E Õ). We further assume that each unseen entity e

Õ is associated with K

triplets: |{(eÕ
, r, ẽ) or (ẽ, r, e

Õ)}| Æ K and ẽ œ (E fi E Õ) , where K is a small number (e.g., K Æ 3).

While few existing works [57, 28, 58] tackle the entity prediction between seen and unseen entities,
in real-world settings, unseen entities do not emerge one by one but may emerge simultaneously as a
set, with only few triplets available for each entity. Thus, they are highly suboptimal in handling such
real-world scenarios, such as few-shot out-of-graph link prediction which we tackle in this work.

2.4 Learning to Extrapolate Knowledge

with Graph Extrapolation Networks

We now introduce Graph Extrapolation Networks (GENs) for the out-of-graph (OOG) link prediction
task. Since most of the previous methods assume that every entity in the test set is seen during training,
they cannot handle emerging entities, which are unobserved during training. While few existing works [57,
28, 58] train for seen-to-seen link prediction with the hope that the models generalize on seen-to-unseen
cases, they are suboptimal in handling unseen entities. Therefore, we use the meta-learning framework to
handle the OOG link prediction problem, whose goal is to train a model over a distribution of tasks such
that the model generalizes well on unseen tasks. Figure 2.1 illustrates our learning framework. Basically,
we meta-train GEN which performs both inductive and transductive inference on various simulated test
sets of OOG entities, such that it extrapolates the knowledge of existing graphs to any unseen entities.
We describe the framework in detail in next few paragraphs.

Learning Objective Suppose that we are given a multi-relational graph G ™ E ◊R◊E , which consists
of seen entities e œ E and relations r œ R. Then, we aim to represent the unseen entities e

Õ œ E Õ over a
distribution p(E Õ), by extrapolating the knowledge on a given graph G, to predict the links between seen
and unseen entities: (e, r, e

Õ) or (eÕ
, r, e), or even between unseen entities themselves: (eÕ

, r, e
Õ). Toward

this goal, we have to maximize the score of a true triplet s(eh, r, et) that contains any unseen entities
e

Õ to rank it higher than all the other false triplets, with embedding and score function parameters ◊

denoted as follows:

max
◊

EeÕ≥p(EÕ) [s(eÕ
, r, ẽ; ◊) or s(ẽ, r, e

Õ; ◊)] , where ẽ œ (E fi E Õ) and e
Õ œ E Õ

. (2.1)

While this is a seemingly impossible goal as it involves generalization to real unseen entities, we can
tackle it with meta-learning by simulating unseen entities during training, which we describe next.

Meta-Learning Framework While conventional learning frameworks can not handle unseen entities
in the training phase, with meta-learning, we can formulate a set of tasks such that the model learns
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Algorithm 1 Meta-Learning of GEN
Require: Distribution over training tasks p (Ttrain)
Require: Learning rate for meta-update –

1: Initialize parameters � = {◊, ◊µ, ◊‡}
2: while not done do
3: Sample a task T ≥ p (Ttrain)
4: for all eÕ

i œ T do
5: Sample support and query sets {Si, Qi} correspond to eÕ

i

6: Inductively generate using (2.3): „i = f◊ (Si)
7: end for
8: for all eÕ

i œ T do
9: Transductively generate using (2.4): µi = g◊µ (Si, „) and

‡i = g◊‡ (Si, „)
10: Sample „Õ

i ≥ N
!
µi, diag

!
‡2

i

""

11: end for
12: Update � Ω � ≠ –Ò�

q
i
L (Qi; „Õ

i) using (2.6)
13: end while

Seen

Inductive

𝒆𝟏′ 𝒆𝑴′. . .𝒆𝟏 𝒆𝟐 𝒆𝑵. . .

Identity

𝝓𝟏 𝝓𝑴

𝝓𝑴
′𝝓𝟏

′

Identity

Inductive

Transductive

Unseen

Extrapolation

Unseen to UnseenSeen to Unseen

. . .

𝒆𝟏 𝒆𝟐 𝒆𝑵. . . 𝒆𝟏′ 𝒆𝑴′. . .

𝒇𝜽(𝑺𝟏) 𝒇𝜽(𝑺𝑴)

𝒈𝜽(𝑺)

Figure 2.3: The overall framework of our
model for each task. We extrapolate knowl-
edge by using a support set S with induc-
tive and transductive learning, and then
predict links with the output embedding „Õ.

to generalize over unseen entities, which are simulated using seen entities. To formulate the OOG link
prediction problem into a meta-learning problem, we first randomly split the entities in a given graph
into the meta-training set for simulated unseen entities, and the meta-test set for real unseen entities.
Then, we generate a task by sampling the set of simulated unseen entities during meta-training, for the
learned model to generalize over actual unseen entities (See Figure 2.1, center).

Formally, each task T over a distribution p(T ) corresponds to a set of unseen entities ET µ E Õ, with a
predefined number of instances |ET | = N . Then we divide the triplets associative with each entity e

Õ
i

œ ET

into the support set Si and the query set Qi: T =
t

N

i=1 Si fi Qi, where Si = {(eÕ
i
, rj , ẽj) or (ẽj , rj , e

Õ
i
)}K

j=1
and Qi = {(eÕ

i
, rj , ẽj) or (ẽj , rj , e

Õ
i
)}Mi

j=K+1; ẽj œ (E fi E Õ). K is the few-shot size, and Mi is the number
of triplets associated with each unseen entity e

Õ
i
. Our meta-objective is then learning to represent the

unseen entities as „ using a support set S with a meta-function f , to maximize the triplet score on a
query set Q with a score function s as follows:

max
◊

ET ≥p(T )

S

U 1
N

Nÿ

i=1

1
|Qi|

Miÿ

j=K+1
s(eÕ

i
, rj , ẽj ; „i, ◊) or s(ẽj , rj , e

Õ
i
; „i, ◊)

T

V , „i = f◊(Si). (2.2)

We refer to this specific setting as K-shot out-of-graph (OOG) link prediction throughout this paper.
Once the model is trained with the meta-training tasks Ttrain, we can apply it to unseen meta-test tasks
Ttest, whose set of entities is disjoint from Ttrain, as shown in the center of Figure 2.1.

Graph Extrapolation Networks In order to extrapolate knowledge of a given graph G to an unseen
entity e

Õ
i

through a support set Si, we propose a GNN-based meta-learner that outputs the representation
of unseen entities. We formulate our meta-learner f◊(·) as follows (Figure 2.3-Inductive):

f◊ (Si) = 1
K

ÿ

(r,e)œn(Si)
WrCr,e, (2.3)

where n(·) is a set of neighboring entities and relations: n (Si) = {(r, e) | (eÕ
i
, r, e) or (e, r, e

Õ
i
) œ Si}. Fur-

ther, K is a size of n(Si), Wr œ Rd◊2d is a relation-specific transformation matrix that is meta-learned,
and Cr,e œ R2d is a concatenation of feature representations of the relation-entity pair. Since GEN is
essentially a framework for OOG link prediction, it is compatible with any GNNs.
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Transductive Meta-Learning of GENs The previously described inductive GEN constructs the
representation of each unseen entity e

Õ
i

through a support set Si, and then performs link prediction on a
query set Qi, independently. A major drawback of this inductive scheme is that it does not consider the
relationships between unseen entities. However, to tackle unseen entities simultaneously as a set, one
should consider not only the relationships between seen and unseen entities as with the inductive GEN,
but also among unseen entities themselves. To tackle this issue, we extend the inductive GEN to further
perform a transductive inference, which will allow knowledge to propagate between unseen entities (see
Subsection 2.7.5 of the Appendix for further discussions on inductive and transductive GENs).

More specifically, we add one more GEN layer g◊(·), which is similar to the inductive meta-learner
f◊(·), to consider inter-relationships between unseen entities (Figure 2.3-Transductive):

g◊ (Si, „) = 1
K

ÿ

(r,e)œn(Si)
WÕ

r
Cr,e + W0„i, (2.4)

where W0 œ Rd◊d is a weight matrix for the self-connection to consider the embedding „i, which is
updated by the previous inductive layer f◊(Si). To leverage the knowledge of neighboring unseen entities,
our transductive layer g◊(·) aggregates the representations across all the neighbors with a weight matrix
WÕ

r
œ Rd◊2d, where neighbors can include the unseen entities with embeddings „, rather than treating

them as noises or ignoring them as zero vectors like a previous inductive scheme.

Stochastic Inference A naive transductive GEN generalizes to the unseen entities by simulating
them with the seen entities during meta-training. However, due to the intrinsic unreliability of few-shot
OOG link prediction with each entity having only few triplets, there could be high uncertainties on
the representations of unseen entities. To model such uncertainties, we stochastically embed the unseen
entities by learning the distribution over an unseen entity embedding „

Õ
i
. To this end, we first assume that

the true posterior distribution has a following form: p(„Õ
i

| Si, „). Since computation of the true posterior
distribution is intractable, we approximate the posterior using q („Õ

i
| Si, „) = N

!
„

Õ
i

| µi, diag
!
‡

2
i

""
, and

then compute the mean and variance via two individual transductive GEN layers: µi = g◊µ (Si, „) and
‡i = g◊‡ (Si, „), which modifies the GraphVAE [63] to our setting. The form to maximize the score
function s is then defined as follows:

s (eh, r, et) = 1
L

Lÿ

l=1
s

1
eh, r, et; „

Õ(l)
, ◊

2
, „

Õ(l) ≥ q(„Õ | S, „). (2.5)

where we set the MC sample size to L = 1 during meta-training for computational e�ciency. Also, we
perform MC approximation with a su�ciently large sample size (e.g. L = 10) at meta-test. We let the
approximate posterior same as the prior to make the consistent pipeline at training and test (see Sohn
et al. [64]). We also model the source of uncertainty on the output embedding of an unseen entity from
the transductive GEN layer via Monte Carlo dropout [65]. Our final GEN is then trained for both the
inductive and transductive steps with stochastic inference, as described in Algorithm 1.

Loss Function Each task T that corresponds to a set of unseen entities ET µ E Õ consists of a support
set and a query set: T = {S, Q}. During training, we represent the embeddings of unseen entities
e

Õ
i

œ ET using the support set S with GENs. After that, at the test time, we use the true labeled query
set Qi to optimize our GENs. Since every query set contains only positive triplets, we perform negative
sampling [23, 24] to update a meta-learner by allowing it to distinguish positive from negative triplets.
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Specifically, we replace the entity of each triplet in the query set: Q≠
i

= {(eÕ
i
, r, e

≠) or (e≠
, r, e

Õ
i
) | e

≠ œ E},
where e

≠ is the corrupted entity. In this way, Q≠
i

holds negative samples for an unseen entity e
Õ
i
. We

then use hinge loss to optimize our model as follows:

L (Qi) =
ÿ

(eh,r,et)œQi

ÿ
(eh,r,et)≠œQ≠

i

max
Ó

“ ≠ s
+(eh, r, et) + s

≠(eh, r, et)≠
, 0

Ô
, (2.6)

where “ > 0 is a margin hyper-parameter, and s is a specific score function in Table 2.1. s
+ and s

≠

denote the scores of positive and negative triplets, respectively. Notably, for the drug-drug interaction
predict task, we follow Ryu et al. [31] to optimize our model, where binary cross-entropy loss is calculated
for each label, with a sigmoid output of the linear score function in Table 2.1.

Meta-Learning for Long-Tail Tasks Since many real-world graphs follow the long-tail distributions
(See Figure 2.2), it would be beneficial to transfer the knowledge from entities with many links to entities
with few links. To this end, we follow a transfer learning scheme similar to Wang et al. [66]. Specifically,
we start to learn the model with many shot cases, and then gradually decrease the number of shots to
few shot cases in a logarithmic scale (see Subsection 2.7.2 of the Appendix for details).

2.5 Experiment

We validate GENs on few-shot out-of-graph (OOG) link prediction for two di�erent domains of
multi-relational graphs: knowledge graph (KG) completion and drug-drug interaction (DDI) prediction.

2.5.1 Knowledge Graph Completion

Datasets For knowledge graph completion datasets, we consider OOG entity prediction, whose goal
is to predict the other entity given an unseen entity and a relation. 1) FB15k-237. This dataset [67]
consists of 310, 116 triplets from 14, 541 entities and 237 relations, which is collected via crowdsourcing.
2) NELL-995. This dataset [30] consists of 154, 213 triplets from 75, 492 entities and 200 relations,
which is collected by a lifelong learning system [68]. Since existing benchmark datasets do not target
OOG link prediction, they assume that all entities given at the test time are seen during training.
Therefore, we modify these two datasets such that the triplets used for link prediction at the test time
contain at least one unseen entity (see Appendix 2.7.1 for the detailed dataset modification setup). 3)
WN18RR. This dataset [25] consists of 93, 003 triplets from 40, 943 entities and 11 relations extracted
from WordNet [21]. Particularly, this dataset includes the unseen entities in validation and test sets,
which overlaps with the 16 triplets to evaluate on a query set during meta-test. Therefore, we compare
models only on these 16 triplets. Detailed descriptions of each dataset are reported in the Appendix 2.7.1.

Baselines and our models 1) TransE, 2) RotatE. Translation distance based embedding methods
for multi-relational graphs [23, 69]. 3) DistMult, 4) ComplEx. Semantic matching based embedding
methods [24, 51]. 5) R-GCN. GNN-based method for modeling multi-relational data [3]. 6) MEAN,
7) LAN. GNN-based methods for a out-of-knowledge base task, which tackle unseen entities without
meta-learning [57, 28]. 8) GMatching, 9) MetaR, 10) FSRL. Link prediction methods for unseen
relations of seen entities, which we further train with our meta-learning framework [52, 53, 54]. 11) I-
GEN. An inductive version of our GEN which is meta-learned to embed an unseen entity. 12) T-GEN.
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Table 2.2: The results of 1- and 3-shot OOG link prediction on FB15k-237 and NELL-995. * means training a
model within our meta-learning framework. Bold numbers denote the best results.

FB15k-237 NELL-995

Model MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S

Seen to Seen
TransE [23] .053 .048 .034 .026 .050 .050 .082 .077 .009 .010 .002 .002 .007 .008 .020 .021
DistMult [24] .017 .014 .010 .009 .019 .014 .029 .022 .017 .016 .009 .008 .017 .017 .029 .028
R-GCN [3] .008 .006 .004 .003 .007 .005 .011 .010 .004 .004 .001 .001 .003 .003 .007 .006

Seen to Seen
(with Support Set)

TransE [23] .071 .120 .023 .057 .086 .137 .159 .238 .071 .118 .037 .061 .079 .132 .129 .223
DistMult [24] .059 .094 .034 .053 .064 .101 .103 .172 .075 .134 .045 .083 .083 .143 .131 .233
ComplEx [51] .062 .104 .037 .058 .067 .114 .110 .188 .069 .124 .045 .077 .071 .134 .117 .213
RotatE [69] .063 .115 .039 .069 .071 .131 .105 .200 .054 .112 .028 .060 .064 .131 .104 .209
R-GCN [3] .099 .140 .056 .082 .104 .154 .181 .255 .112 .199 .074 .141 .119 .219 .184 .307

Seen to Unseen

MEAN [57] .105 .114 .052 .058 .109 .119 .207 .217 .158 .180 .107 .124 .173 .189 .263 .296
LAN [28] .112 .112 .057 .055 .118 .119 .214 .218 .159 .172 .111 .116 .172 .181 .255 .286
GMatching [52] .093 .105 .061 .061 .100 .112 .146 .183 .060 .079 .051 .059 .063 .097 .076 .106
MetaR [53] .076 .084 .043 .041 .084 .093 .133 .164 .092 .096 .059 .060 .107 .115 .154 .166
FSRL [54] .097 .090 .065 .058 .104 .096 .156 .150 .067 .085 .054 .064 .068 .095 .091 .126

Ours

GMatching* [52] .224 .238 .157 .168 .249 .263 .352 .372 .120 .139 .074 .092 .136 .151 .215 .235
MetaR* [53] .294 .316 .223 .235 .318 .341 .441 .492 .177 .213 .104 .145 .217 .247 .315 .352
FSRL* [54] .255 .259 .187 .186 .279 .281 .391 .404 .130 .161 .075 .106 .145 .181 .253 .275
I-GEN .348 .367 .270 .281 .382 .407 .504 .537 .278 .285 .206 .214 .313 .322 .416 .426
T-GEN .367 .382 .282 .289 .410 .430 .530 .565 .282 .291 .209 .217 .320 .333 .421 .433

A transductive version of GEN, with additional stochastic transductive GNN layers to predict the link
between unseen entities. We report detailed descriptions in the Appendix 2.7.1.

Implementation Details 1) Seen to Seen. This scheme only trains seen-to-seen triplets from
a meta-training set, without including unseen entities on a meta-test set. 2) Seen to Seen (with
Support Set). Following Xiong et al. [52], this scheme trains seen-to-seen link prediction baselines
including support triplets of meta-validation and meta-test sets with unseen entities, since baselines
are unable to solve the completely unseen entities at the test time. 3) Seen to Unseen. This scheme
tackles the link prediction for unseen entities without meta-learning [57, 28], or link prediction for unseen
relations of seen entities with meta-learning [52, 53, 54]. 4) Ours. Our meta-learning framework trains
models only with a meta-training set, where we generate OOG entities using the episodic training [41].
For both I-GEN and T-GEN, we use DistMult for the initial embeddings of entities and relations, and
the score function. We report detailed experimental setups in the Appendix 2.7.1.

Evaluation Metrics For evaluation, we use the ranking procedure by Bordes et al. [70]. For a triplet
with an unseen head entity, we replace its corresponding tail entity with candidate entities from the
dictionary to construct corrupted triplets. Then, we rank all the triplets, including the correct and
corrupted ones by a scoring measure, to obtain a rank of the correct triplet. We provide the results using
mean reciprocal rank (MRR) and Hits at n (H@n). Moreover, as done in previous works [23, 3], we
measure the ranks in a filtered setting, where we do not consider triplets that appeared in either training,
validation, or test sets. Finally, for a fair evaluation [71], we validate our models on di�erent evaluation
protocols, across which performances of our models remain consistent.

Main Results Table 2.2 shows that our I- and T-GEN outperform all baselines by impressive margins.
Baseline models work poorly on emerging entities, even when they have seen the entities during training
(with Support Set in Table 2.2). However, in our meta-learning framework, our GENs show superior
performances over the baselines, even with a 1-shot setting. Moreover, while unseen relation prediction

10



Figure 2.4: The results of seen to unseen (S/U), unseen to unseen (U/U) and
total link prediction of I- and T-GEN with deterministic (D) and stochastic
(S) modeling on KG completion and DDI prediction tasks.

Figure 2.5: 3-shot OOG link
prediction results, reported with
MRR over training time.

baselines achieve extremely low performances compared to our GENs, we train baselines in our meta-
learning framework and obtain significantly improved results. However, their performances are still
substantially lower than GENs, which shows that GEN’s dedicated embedding layers for seen-to-unseen
and unseen-to-unseen link prediction are more e�ective for OOG link prediction.

Analysis on Seen to Unseen and Unseen to Unseen We observe that T-GEN outperforms I-GEN
on both datasets by all evaluation metrics in Table 2.2. To see where the performance improvement
comes from, we further examine the link prediction results for seen-to-unseen and unseen-to-unseen
cases. Figure 2.4 shows that T-GEN obtains significant performance gain on the unseen-to-unseen link
prediction problems, whereas I-GEN mostly cannot handle the unseen-to-unseen case as it does not
consider the relationships between unseen nodes. Further, T-GEN with stochastic inference obtains
even higher unseen-to-unseen link prediction performances, over deterministic T-GEN, which shows that
modeling uncertainty in the latent embedding space of the unseen entities is e�ective.

E�ciency of Meta-Learning To demonstrate the e�ciency of our meta-learning framework that
embeds unseen entities without additional re-training, we compare GENs against models trained from
scratch including unseen entities, for 3-shot OOG link prediction on FB15k-237. Figure 2.5 shows that
GENs largely outperform baselines with a fraction of time required to embed unseen entities. Also,
MetaR trained in our meta-learning framework is slower since it uses additional gradient information.
This shows that GENs are e�cient and generalize well to unseen entities with e�ective GNN layers.

Figure 2.6: Diverse shots link prediction results
with baselines and GENs on KG completion tasks.

(Training) 1-Shot (Training) 3-Shot
Test MRR H@1 H@10 MRR H@1 H@10
1-S .367 .282 .530 .346 .262 .507
3-S .377 .288 .556 .382 .289 .565
5-S .362 .266 .562 .370 .269 .570
R-S .375 .287 .548 .373 .282 .547

Table 2.3: Cross-shot learning results of T-GEN on KG
completion tasks, by varying training and test shots.

Robustness on Many Shots While we mostly target a long-tail graph with the majority of entities
having few links, our method works well on many-shot cases as well (Figure 2.6), on which GENs still
largely outperform the baselines, even though R-GCN sees the unseen entities during training.

Robustness on Varying Shots We experiment our GEN with varying the number of shots by consid-
ering 1-, 3-, 5-, and random-shot (R-S: between 1 and 5) during meta-training and meta-test. Table 2.3
shows that di�erences in the number of shots used for training and test does not significantly a�ect the
performance, which demonstrates the robustness of GENs on varying shots at test time. Moreover, our
model trained on a 1-shot setting obtains even better performance on a 3-shot setting.
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WN18RR
Model MRR H@1 H@10
DistMult [24] .000 .000 .000
TransE [23] .011 .000 .031
MetaR* [53] .066 .063 .063
I-GEN .125 .125 .125

Table 2.4: 1-shot OOG link prediction re-
sults on WN18RR for unseen entities.

Seen to Unseen Unseen to Unseen

Model SI MRR H@3 MRR H@3
T-GEN O .379 .424 .185 .187
w/o transfer strategy O .374 .414 .183 .175
w/o pretrain O .361 .400 .168 .164
w/o stochastic inference X .384 .425 .153 .158
w/o transductive scheme X .366 .403 .000 .000

Table 2.5: Ablation study of T-GEN on FB15k-237. SI means
whether to apply stochastic inference.

Results on Unseen Entities for WN18RR As previously mentioned, WN18RR dataset includes
a small number of unseen entities in the test set. Therefore, we validate GEN only against test triplets
that contain unseen entities in the test set. Table 2.4 shows that our GEN can improve the performance
of out-of-graph link prediction even on this benchmark dataset.

Ablation Study We conduct an ablation study of the T-GEN on seen-to-unseen and unseen-to-unseen
cases. Table 2.5 shows that using stochastic inference on the transductive layer helps significantly improve
the unseen-to-unseen link prediction performance. Moreover, the meta-learning strategy of learning on
entities with many links and then progressing to entities with few links performs well. Finally, we observe
that using pre-trained embedding of a seen graph leads to better performance.

Qualitative Results We visualize the output representations of unseen entities with seen entities.
Figure 2.1 (Right) shows that the embeddings of unseen entities are well aligned with the seen entities.
Regarding concrete examples of the link prediction on NELL-995, see Subsection 2.7.4 of the Appendix.

2.5.2 Drug-Drug Interaction

Datasets We further validate our GENs on the OOG relation prediction task using two public Drug-
Drug Interaction (DDI) datasets. 1) DeepDDI. This dataset [31] consists of 1,861 drugs (entities) and
222,127 drug-drug pairs (triplets) from DrugBank [72], where 113 di�erent relation types are used as
labels. 2) BIOSNAP-sub. This dataset [32, 59] consists of 645 drugs (entities) and 46,221 drug-drug
pairs (triplets), where 200 di�erent relation types are used as labels. Similar to the experiments on
OOG knowledge graph completion tasks, we modify drug-drug interaction datasets for the OOG link
prediction task. We report the detailed setup in Appendix 2.7.1.

Baselines and our models 1) MLP. Feed-forward neural network used in the DDI task [31]. 2)
MPNN. Graph Neural Network that uses edge-conditioned convolution operations [38]. 3) R-GCN.
The same model used in the entity prediction on the KG completion task [3]. 4) I-GEN. Inductive
GEN, which only uses a feature representation of an entity ek, instead of a relation-entity pair (rk, ek).
This is because the relation is the prediction target for the DDI tasks. 5) T-GEN. Transductive GEN
with an additional transductive stochastic layer for unseen-to-unseen relation prediction.

Implementation Details For both I-GEN and T-GEN, we use MPNN for the initial embeddings of
entities with a linear score function in Table 2.1. To train baselines, we use the Seen to Seen (with Support
Set) scheme as in the KG completion task, where support triplets of meta-validation and meta-test sets
are included during training. We report detailed experimental settings in the Appendix 2.7.1.
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Evaluation Metrics For evaluation, we use the area under the receiver operating characteristic curve
(ROC), the area under the precision-recall curve (PR), and the classification accuracy (Acc).

Table 2.6: Results of 3-shot OOG relation
prediction on DeepDDI and BIOSNAP-sub.

DeepDDI BIOSNAP-sub

Model ROC PR Acc ROC PR Acc

MLP .928 .476 .528 .597 .034 .049
MPNN [38] .939 .478 .681 .597 .026 .067
R-GCN [3] .928 .397 .640 .594 .041 .051

I-GEN .946 .681 .807 .608 .062 .073
T-GEN .954 .708 .815 .625 .067 .089

Main Results Table 2.6 shows the Drug-Drug Interaction
(DDI) prediction performances of the baselines and GENs.
Note that the performances on BIOSNAP-sub are compara-
tively lower in comparison to DeepDDI, due to the use of the
preprocessed input features, as suggested by Ryu et al. [31].
Similar to the KG completion tasks, both I- and T-GEN out-
perform all baselines by impressive margins in all evaluation
metrics. These results demonstrate that our GENs can be
easily extended to OOG link prediction for other real-world
applications of multi-relational graphs.

Analysis on Seen to Unseen and Unseen to Unseen We also compare the link prediction per-
formance for both seen-to-unseen and unseen-to-unseen cases on two DDI datasets. The rightmost two
columns of Figure 2.4 show that T-GEN obtains superior performance over I-GEN on unseen-to-unseen
link prediction cases, especially when utilizing stochastic modeling schemes.

2.6 Conclusion

We formally defined a realistic problem of the few-shot out-of-graph (OOG) link prediction task,
which considers link prediction not only between seen to unseen (or emerging) entities but also between
unseen entities for multi-relational graphs, where each entity comes with only few associative triplets to
train. To this end, we proposed a novel meta-learning framework for OOG link prediction, which we
refer to as Graph Extrapolation Network (GEN). Under the defined K-shot learning setting, GENs learn
to extrapolate the knowledge of a given graph to unseen entities, with a stochastic transductive layer
to further propagate the knowledge between the unseen entities and to model uncertainty in the link
prediction. We validated the OOG link prediction performance of GENs on five benchmark datasets, on
which proposed models largely outperformed the relevant baselines.

2.7 Appendix

2.7.1 Experimental Setup

Datasets Since existing benchmark datasets assume that all entities given at the test time are seen
during training, we modify the datasets to formulate the Out-of-Graph (OOG) link prediction task,
where completely unseen entities appear at the test time. Dataset modification processes are as follows:

• First, we randomly sample the unseen entities, which have a relatively small amount of triplets on
each dataset. We then divide the sampled unseen entities into meta-training/validation/test sets.

• Second, we select the triplets which are used for constructing an In-Graph, where the head and tail
entities of every triplet in the In-Graph consist of only seen entities, not any unseen entity.

• Finally, we match the unseen entities in the meta-sets with their triplets. Each triplet in meta-sets
contains at least one unseen entity. Also, every triplet in meta-sets is not included in the In-Graph.
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Figure 2.7: Distribution of entity occurrences on FB15k-237, NELL-995, DeepDDI, and BIOSNAP-sub.

1) FB15k-237. This dataset [67] consists of 14,541 entities and 237 relations, which is collected
from crowdsourcing and used for the knowledge graph completion task. We randomly sample the 5,000
entities from 10,938 entities, which have associated triplets between 10 and 100. Also, we split the entities
such that we have 2,500/1,000/1,500 unseen (Out-of-Graph) entities and 72,065/6,246/9,867 associated
triplets containing unseen entities for meta-training/validation/test. The remaining triplets that do not
hold an unseen entity are used for constructing an In-Graph. As shown in Figure 2.7, this dataset follows
a highly long-tailed distribution.

2) NELL-995. This dataset [30] consists of 75,492 entities and 200 relations, which is collected by
a lifelong learning system [68] and used for the knowledge graph completion task. We randomly sample
the 3,000 entities from 5,694 entities, which have associated triplets between 7 and 100. Also, we split
the entities such that we have 1,500/600/900 unseen (Out-of-Graph) entities and 22,345/3,676/5,852
associated triplets containing unseen entities for meta-training/validation/test. The remaining triplets
that do not hold an unseen entity are used for constructing an In-Graph. As shown in Figure 2.7, this
dataset follows a highly long-tailed distribution.

3) WN18RR. This dataset [25] consists of 93,003 triplets from 40,943 entities and 11 relations,
which is collected from WordNet [21] and used for the knowledge graph completion task. Particularly,
this dataset essentially contains 198 unseen entities over 210 triplets on the validation set and 209 unseen
entities over 210 triplets on the test set.

Note that, to construct a support set for training and a query set for test in our meta-learning
framework, we need at least two triplets for each unseen entity. Therefore, even in the WN18RR that
contains an appropriate number of unseen entities, the amount of triplets to evaluate on a query set is
too small (only 16 triplets to test, which is 0.02 % compared to the number of all triplets), in which we
consider validation and test sets together since test set only has 3 triplets to test. In other words, most
unseen entities on WN18RR have only one triplet, which reflects the long-tail distribution of real-world
graphs for emerging entities. Thus, we compare models only on these 16 triplets during meta-test.

To use the meta-learning framework from the conventional learning scheme, we randomly sample
the 3,000 unseen entities from 4,478 entities, which have associated triplets between 8 and 100. After
that, we use the sampled 3,000 unseen entities for meta-training which has 36,166 overlapped triplets.
The remaining triplets that do not hold an unseen entity are used for constructing an In-Graph.

4) DeepDDI. This dataset [31] consists of 1,861 entities and 113 relations, which is collected
from the DrugBank database [72] and used for the drug-drug interaction prediction task. We randomly
sample the 500 entities from 1,039 entities, which have associated triplets between 7 and 300. Also, we
split the entities such that we have 250/100/150 unseen (Out-of-Graph) entities and 27,726/1,171/2,160
associated triplets containing unseen entities for meta-training/validation/test. The remaining triplets
that do not hold an unseen entity are used for constructing an In-Graph.

5) BIOSNAP-sub. This dataset [59] consists of 637 entities and 200 relations, which is col-
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lected from the BIOSNAP [32], further modified by Ma et al. [59] for e�ciency and used for the
drug-drug interaction prediction task. We randomly sample the 150 entities from 507 entities, which
have associated triplets between 7 and 300. Also, we split the entities such that we have 75/30/45
unseen (Out-of-Graph) entities and 7,140/333/643 associated triplets containing unseen entities for
meta-training/validation/test. The remaining triplets that do not hold an unseen entity are used for
constructing an In-Graph.

Baselines and Our Models for Knowledge Graph Completion We describe the baseline models
and our graph extrapolation networks for few-shot out-of-graph entity prediction on the knowledge graph
(KG) completion task.

1) TransE. This is a translation embedding model for relational data by Bordes et al. [23]. It
represents both entities and relations as vectors in the same space, where the relation in a triplet is used
as a translation operation between the head and the tail entity.

2) RotatE. This model represents entities as complex vectors and relations as rotations in a complex
vector space [69], which extends TransE with a complex operation.

3) DistMult. This model represents the relationship between the head and the tail entity in a
bi-linear formulation, which can capture pairwise interaction between entities [24].

4) ComplEx. This model extends the DistMult by introducing embeddings on a complex space to
consider asymmetric relations, where scores are measured based on the order of the entities [51].

5) R-GCN. This is a GNN-based method for modeling relational data, which extends the graph
convolutional network to consider multi-relational structures, by Schlichtkrull et al. [3].

6) MEAN. This model computes the embedding of entities by GNN-based neighboring aggregation
scheme, where they only train for seen-to-seen link prediction, with the hope that the model generalizes
on seen-to-unseen cases, without meta-learning [57].

7) LAN. This model extends the MEAN [57] to consider relations with neighboring information by
utilizing attention mechanisms, without meta-learning [28].

8) GMatching. This model tackles the link prediction on unseen relations of seen entities by
searching for the closest entity pair with meta-learning [52]. We further extend it in our meta-learning
framework such that it can handle unseen entities.

9) MetaR. This model tackles the link prediction on unseen relations of seen entities by generating
the embeddings of unseen relations with gradient information over the meta-learning framework [53].
We further extend it in our meta-learning framework such that it can handle unseen entities.

10) FSRL. This model extends the GMatching [52] to tackle the link prediction on unseen relations
of seen entities by utilizing attention mechanisms with meta-learning [54]. We further extend it in our
meta-learning framework such that it can handle unseen entities.

11) I-GEN. This is an inductive version of our Graph Extrapolation Network (GEN), that is
meta-learned to embed an unseen entity to infer hidden links between seen and unseen entities.

12) T-GEN. This is a transductive version of GEN, with additional stochastic transductive GNN
layers on top of the I-GEN, that is meta-learned to predict the links between unseen entities as well as
between seen and unseen entities.

Baselines and Our Models for Drug-Drug Interaction We describe the baseline models and our
graph extrapolation networks for few-shot out-of-graph relation prediction on the drug-drug interaction
(DDI) task.
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1) MLP. This is a feed-forward neural network model used for DeepDDI [31] dataset. It classifies
the relation of two drugs using their pairwise features.

2) MPNN. This is a GNN-based model that uses features for relation types with edge-conditioned
convolution operations [38].

3) R-GCN. This is the same model used in the entity prediction on knowledge graph completion
tasks [3], applied to drug-drug interaction tasks.

4) I-GEN. This is an inductive GEN, which only uses the feature representation of the entity
ek when aggregating neighboring information, instead of using the concatenated representation of the
relation-entity pair (rk, ek) like KG completion tasks. This is because the relation is the prediction target
for the DDI tasks.

5) T-GEN. This is a transductive version of GEN, with additional transductive stochastic layers
on top of the I-GEN, for unseen-to-unseen relation prediction as well as seen-to-unseen prediction.

Common Implementation Details For every dataset, we set the embedding dimension for both
entity and relation as 100. Also, we set the embedding of unseen entities as the zero vector. Furthermore,
since we consider a highly multi-relational graph, we use the basis decomposition on weight matrices Wr

and WÕ
r

to prevent the excessive increase in the model size, which is proposed in Schlichtkrull et al.
[3]: Wr =

q
B

b=1 arbVb, where B is a number of basis, arb is a coe�cient of each relation r œ R, and
Vb œ Rd◊2d is a shared representation of various relations. For all experiments, we use PyTorch [73] and
PyTorch geometric [74] frameworks, and train on a single Titan XP or a single GeForce RTX 2080 Ti
GPU. We optimize the proposed GENs using Adam [75].

Implementation Details on Knowledge Graph Completion For both I-GEN and T-GEN, we
search for the learning rate – in the range of

)
3 ◊ 10≠4

, 1 ◊ 10≠3
, 3 ◊ 10≠3*

, margin “ in the range of
{0.25, 0.5, 1}, and dropout ratio at every GEN layer in the range of {0.1, 0.2, 0.3}. As a score function, we
use DistMult [24] at the end of our GENs. For all datasets, we consider the inverse relation as suggested
by several recent works for multi-relational graphs [16, 3, 39], since directed relation information flows
along with both directions. Finally, to select the best model, we use the mean reciprocal rank (MRR)
as an evaluation metric.

For FB15k-237 dataset, we set the – = 1 ◊ 10≠3 and “ = 1 with dropout rate 0.3. Also, we set the
number of basis units B = 100 for the basis decomposition on each GEN layer, and sample 32 negative
triplets for each positive triplet in both I-GEN and T-GEN. At every episodic training, we randomly
sample 500 unseen entities in the meta-training set. Also, we validate and test models using all unseen
entities in the meta-validation and meta-test sets, respectively.

For NELL-995 dataset, we use the same settings with FB15k-237, except that we sample 64 negative
triplets for each positive triplet.

For WN18RR dataset, we use the same settings with FB15k-237, except that we randomly sample
100 unseen entities for episodic training during meta-training.

Implementation Details on Drug-Drug Interaction For both I-GEN and T-GEN, we search for
the learning rate – in the range of

)
5 ◊ 10≠4

, 1 ◊ 10≠3
, 5 ◊ 10≠3*

, and dropout ratio at every GEN layer
in the range of {0.1, 0.2, 0.3}. As a score function, we use two linear layers with ReLU as an activation
function at the end of the first layer. For all datasets, we consider the inverse relation as in the case
of the knowledge graph completion task. Finally, to select the best model, we use the area under the
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Table 2.7: The naive and meta-learning strategy results of 1- and 3-shot OOG link prediction on FB15k-237
and NELL-995. Bold numbers denote the best results on I-GEN and T-GEN, respectively.

FB15k-237 NELL-995

Model MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S

I-GEN .348 .367 .270 .281 .382 .407 .504 .537 .278 .285 .206 .214 .313 .322 .416 .426
w/o transfer strategy .344 .362 .264 .275 .379 .401 .503 .527 .272 .277 .198 .206 .309 .314 .413 .414

T-GEN .367 .382 .282 .289 .410 .430 .530 .565 .282 .291 .209 .217 .320 .333 .421 .433
w/o transfer strategy .362 .381 .278 .291 .400 .422 .527 .563 .273 .290 .198 .217 .310 .326 .412 .431

receiver operating characteristic curve (ROC) as an evaluation metric.
For DeepDDI dataset, we set the – = 1 ◊ 10≠3 with dropout rate 0.3 for both I-GEN and T-GEN.

Also, we set the number of basis units B = 200 for the basis decomposition. At every episodic training,
we randomly sample 80 unseen entities in the meta-training set. Also, we validate and test models using
all unseen entities in the meta-validation and meta-test sets, respectively.

For BIOSNAP-sub dataset, we set the – = 1 ◊ 10≠3 with dropout rate 0.1 for I-GEN and 0.2 for
T-GEN. Also, we set the number of basis units B = 200 for the basis decomposition. At every episodic
training, we randomly sample 50 unseen entities in the meta-training set. Also, we validate and test
models using all unseen entities in the meta-validation and meta-test sets, respectively.

2.7.2 Meta-learning for Long-tail Tasks

Implementation Details Many real-world graphs follow the long-tail distribution, where few entities
have many links while the majority have few links (See Figure 2.7). For such an imbalanced graph, it
would be beneficial to transfer the knowledge from entities with many links to entities with few links.
To this end, we transfer the meta-knowledge on data-rich entities to data-poor entities by simulating the
data-rich circumstance under the meta-learning framework, motivated by Wang et al. [66]. Specifically,
we first meta-train our GENs with many shot cases (e.g. K = 10), and then gradually decrease the
number of shots to few shots cases (e.g. K = 1 or 3) in logarithmic scale: Ki = Âlog2(max-iteration/i)Ê+
K, where Ki is the training shot size at the current iteration number i, and K is the test shot size. In
this way, GENs learn to represent the unseen entities using data-rich instances, and entities with few
links regimes may experience like data-rich instances, with the model parameters trained on the entities
with many links and tuned on the entities with few links.

More Ablation Studies Since knowledge graphs follow a highly long-tailed distribution (See Fig-
ure 2.7), we provide the more experimental results about transfer strategies on knowledge graph com-
pletion tasks, to demonstrate the e�ectiveness of the proposed meta-learning scheme on a long-tail task.
Table 2.7 shows that the transfer strategy outperforms naive I-GEN and T-GEN on all evaluation met-
rics, except for only two H@1 cases of T-GEN on 3-shot OOG link prediction settings. We conjecture
that the e�ectiveness of the meta-learning scheme is especially larger on 1-shot cases, where data is
extremely poor, rather than the 3-shot cases.

2.7.3 Additional Experimental Results

E�ect of Score Function While we performed all experiments with DistMult score function in
the main paper, we further evaluate proposed GENs on the few-shot OOG link prediction task with
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Table 2.8: Total, seen-to-unseen and unseen-to-unseen results of 1- and 3-shot OOG link prediction on FB15k-
237. * means training a model within our meta-learning framework. Bold numbers denote the best results.

Total Seen to Unseen Unseen to Unseen

Model MRR H@1 H@3 H@10 MRR H@10 MRR H@10
1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S

Seen to Seen
TransE [23] .053 .048 .034 .026 .050 .050 .082 .077 .055 .050 .086 .081 .016 .014 .029 .025
DistMult [24] .017 .014 .010 .009 .019 .014 .029 .022 .018 .015 .029 .022 .011 .007 .025 .015
R-GCN [3] .008 .006 .004 .003 .007 .005 .011 .010 .003 .003 .005 .006 .076 .050 .101 .070

Seen to Unseen
MEAN [57] .105 .114 .052 .058 .109 .119 .207 .217 .112 .121 .221 .231 .000 .000 .000 .000
LAN [28] .112 .112 .057 .055 .118 .119 .214 .218 .119 .119 .228 .232 .000 .000 .000 .000
GMatching* [52] .224 .238 .157 .168 .249 .263 .352 .372 .239 .254 .375 .400 .000 .000 .000 .000

Ours

I-GEN (Random) .309 .319 .236 240 .337 .352 .455 .477 .329 .339 .485 .508 .000 .000 .000 .000
I-GEN (DistMult) .348 .367 .270 .281 .382 .407 .504 .537 .371 .391 .537 .571 .000 .000 .000 .000
I-GEN (TransE) .345 .371 .259 .275 .385 .416 .515 .559 .367 .395 .548 .594 .000 .000 .000 .000

T-GEN (Random) .349 .360 .268 .273 .385 .398 .508 .532 .361 .373 .529 .554 .168 .164 .185 .192
T-GEN (DistMult) .367 .382 .282 .289 .410 .430 .530 .565 .379 .396 .550 .588 .185 .175 .220 .201
T-GEN (TransE) .356 .374 .267 .282 .403 .425 .531 .552 .368 .387 .552 .572 .175 .175 .205 .235

Figure 2.8: T-SNE visualization of the learned embeddings for seen and unseen entities.

TransE [23], which is another popular score function. We use the same settings as with DistMult [24]
experiments, except that we use TransE for the initial embedding and the score measurement. Table 2.8
shows that our I-GEN and T-GEN with TransE score function also outperform all baselines by impres-
sive margins, where they perform comparably to DistMult. These results suggest that our model works
regardless of the score function.

E�ect of Initialization We further demonstrate the meta-training e�ectiveness of our meta-learner,
by randomly initializing an In-Graph, in which GEN extrapolates knowledge for an unseen entity without
using the pre-trained embeddings of entity and relation. Table 2.8 shows that, while results with the
random initialization are lower than pre-trained models, GENs are still powerful on the unseen entity,
compared to the baselines. These results suggest that GENs trained under the meta-learning framework
can be applied to more di�cult situations, as pre-trained In-Graph might not be available for the few-shot
OOG link prediction in real-world scenarios.

E�ect of Transductive Scheme As shown in Table 2.8, I-GEN achieves comparable performances
with T-GEN on seen-to-unseen link prediction. However, since the inductive method can not handle
two unseen entities at once, this scheme does not solve the unseen-to-unseen link prediction for two
emerging entities. However, unseen entities do not emerge one by one, but may emerge simultaneously
as a set in real-world settings, such that we consider a transductive scheme to deal with this challenging
circumstance. Table 2.8 shows that, while the unseen-to-unseen link prediction performances of T-GEN
is far from the seen-to-unseen performances, T-GEN can infer hidden relationships among unseen entities
by transductive learning and inference.
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Table 2.9: Examples of OOG link prediction on NELL-995. S: seen, U: unseen, O: correct prediction, X:
incorrect prediction, (H): head entity, (R): relation, (T): tail entity, and : unseen entity.

Type I-GEN T-GEN Triplet

S-U O O
(H) musician vivaldi,
(R) musician plays instrument,
(T) music instrument string

S-U O O
(H) city hawthorne,
(R) city located in state,
(T) state or province california

S-U O O
(H) journalist maureen dowd,
(R) works for,
(T) company york times

S-U O O
(H) person monroe,
(R) person born in location,
(T) county york city

S-U O O
(H) ceo stan o neal,
(R) works for,
(T) retailstore merrill

S-U O O
(H) insect insects,
(R) invertebrate feed on food ,
(T) agricultural product wood

U-U X O
(H) person katsuaki watanabe,
(R) person leads organization,
(T) automobilemaker toyota

U-U X O
(H) mlauthor web search,
(R) agent competes with agent,
(T) website altavista com

U-U X O
(H) chemical chromium,
(R) chemical is type of chemical,
(T) chemical heavy metals

U-U X X
(H) food meals,
(R) food decreases the risk of disease,
(T) disease heart disease

More Visualization The experimental results on multiple datasets show that our GENs significantly
outperform baselines, even when they are retrained with the unseen entities. To see why does GENs
generalize well to the unseen entities, we visualize the output embeddings of seen-to-unseen baseline
(LAN), seen-to-seen baseline (TransE) which is retrained from scratch, and T-GEN. As shown in Fig-
ure 2.8, since GEN embeds the unseen entities on the manifold of seen entities, it achieves better results
on few-shot OOG link prediction tasks than baseline models.

2.7.4 Examples

Table 2.9 shows some concrete examples of the OOG link prediction result from NELL-995 dataset,
where the 7 to 9 rows show that our T-GEN correctly performs link prediction for two unseen entities.

2.7.5 Discussion on Inductive and Transductive Schemes

In this subsection, we describe in detail about task-level transductive inference and meta-level induc-
tive inference for the proposed transductive GEN (T-GEN) model. Since transductive GEN requires to
predict links between two unseen test entities which is impossible to handle using conventional link pre-
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diction approaches, the problem is indeed transductive. Furthermore, the inference of unseen-to-unseen
links could be also considered as inductive at meta-level, where we inductively learn the parameters
of GEN across the batch of tasks. Thus, we are tackling transductive inference problems by consid-
ering them as meta-level inductive problems, but the intrinsic unseen-to-unseen link prediction is still
transductive. To illustrate more concretely, di�erent sets of unseen entities make mutually inconsis-
tent predictions, which is caused by transduction. Other transductive meta-learning approaches such as
TPN [76] and EGNN [77] tackle the problem with similar high-level ideas, where they classify unseen
classes by leveraging both information on labeled and unlabeled nodes.
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This Chapter is based on the work that is published at ICLR 2021 [78].

Chapter 3. Accurate Learning of Entire Graph Representations

How do we obtain a compact representation of an entire graph, often having a large number of
nodes, while expressively distinguishing two di�erent graphs? We summarize the formulation of
our graph polling scheme, and the theoretical and empirical results that we obtain, in below.

Graph neural networks have been widely used on modeling graph data, achieving impressive re-
sults on node classification and link prediction tasks. Yet, obtaining an accurate representation
for a graph further requires a pooling function that maps a set of node representations into a
compact form. A simple sum or average over all node representations considers all node features
equally without consideration of their task relevance, and any structural dependencies among
them. Recently proposed hierarchical graph pooling methods, on the other hand, may yield the
same representation for two di�erent graphs that are distinguished by the Weisfeiler-Lehman test,
as they suboptimally preserve information from the node features. To tackle these limitations of
existing graph pooling methods, we first formulate the graph pooling problem as a multiset encod-
ing problem with auxiliary information about the graph structure, and propose a Graph Multiset
Transformer (GMT) which is a multi-head attention based global pooling layer that captures
the interaction between nodes according to their structural dependencies. We show that GMT
satisfies both injectiveness and permutation invariance, such that it is at most as powerful as the
Weisfeiler-Lehman graph isomorphism test. Moreover, our methods can be easily extended to
the previous node clustering approaches for hierarchical graph pooling. Our experimental results
show that GMT significantly outperforms state-of-the-art graph pooling methods on graph clas-
sification benchmarks with high memory and time e�ciency, and obtains even larger performance
gain on graph reconstruction and generation tasks.

3.1 Introduction

Graph neural networks (GNNs) [4, 5], which work with graph structured data, have recently at-
tracted considerable attention, as they can learn expressive representations for various graph-related
tasks such as node classification, link prediction, and graph classification. While the majority of the
existing works on GNNs focus on the message passing strategies for neighborhood aggregation [6, 35],
which aims to encode the nodes in a graph accurately, graph pooling [79, 80] that maps the set of nodes
into a compact representation is crucial in capturing a meaningful structure of an entire graph.

As a simplest approach for graph pooling, we can average or sum all node features in the given
graph [81, 10] (Figure 3.1 (B)). However, since such simple aggregation schemes treat all nodes equally
without considering their relative importance on the given tasks, they can not generate a meaningful
graph representation in a task-specific manner. Their flat architecture designs also restrict their capa-
bility toward the hierarchical pooling or graph compression into few nodes. To tackle these limitations,
several di�erentiable pooling operations have been proposed to condense the given graph. There are two
dominant approaches to pooling a graph. Node drop methods [79, 82] (Figure 3.1 (C)) obtain a score
of each node using information from graph convolutional layers, and then drop unnecessary nodes with
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Figure 3.1: Concepts (Left): Conceptual comparison of graph pooling methods. Grey box indicates the
readout layer, which is compatible with our method. Also, green check icon indicates the model that can be
as powerful as the WL test. (Right): An illustration of set, multiset, and graph multiset encoding for graph
representation.

lower scores at each pooling step. Node clustering methods [80, 83] (Figure 3.1 (D)), on the other hand,
cluster similar nodes into a single node by exploiting their hierarchical structure.

Both graph pooling approaches have obvious drawbacks. First, node drop methods unnecessarily
drop some nodes at every pooling step, leading to information loss on those discarded nodes. On the
other hand, node clustering methods compute the dense cluster assignment matrix with an adjacency
matrix. This prevents them from exploiting sparsity in the graph topology, leading to excessively high
computational complexity [82]. Furthermore, to accurately represent the graph, the GNNs should obtain
a representation that is as powerful as the Weisfeiler-Lehman (WL) graph isomorphism test [12], such that
it can map two di�erent graphs onto two distinct embeddings. While recent message-passing operations
satisfy this constraint [84, 10], most deep graph pooling works [80, 82, 85, 83] overlook graph isomorphism
except for a few [79].

To obtain accurate representations of graphs, we need a graph pooling function that is as powerful
as the WL test in distinguishing two di�erent graphs. To this end, we first focus on that the graph rep-
resentation learning can be regarded as a multiset encoding problem, which allows for possibly repeating
elements, since a graph may have redundant node representations (See Figure 3.1, right). However, since
a graph is more than a multiset due to its structural constraint, we further define the problem as a graph
multiset encoding, whose goal is to encode two di�erent graphs, given as multisets of node features with
auxiliary structural dependencies among them (See Figure 3.1, right), into two unique embeddings. We
tackle this problem by utilizing a graph-structured attention unit. By leveraging this unit as a funda-
mental building block, we propose the Graph Multiset Transformer (GMT), a pooling mechanism that
condenses the given graph into the set of representative nodes, and then further encodes relationships
between them to enhance the representation power of a graph. We theoretically analyze the connection
between our pooling operations and WL test, and further show that our graph multiset pooling function
can be easily extended to node clustering methods.

We then experimentally validate the graph classification performance of GMT on 10 benchmark
datasets from biochemical and social domains, on which it significantly outperforms existing methods on
most of them. However, since graph classification tasks only require discriminative information, to better
quantify the amount of information about the graph in condensed nodes after pooling, we further validate
it on graph reconstruction of synthetic and molecule graphs, and also on two graph generation tasks,
namely molecule generation and retrosynthesis. Notably, GMT outperforms baselines with even larger
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performance gap on graph reconstruction, which demonstrates that it learns meaningful information
without forgetting original graph structure. Finally, it improves the graph generation performance on
two tasks, which shows that GMT can be well coupled with other GNNs for graph representation learning.
In sum, our main contributions are summarized as follows:

• We treat a graph pooling problem as a multiset encoding problem, under which we consider relation-
ships among nodes in a set with several attention units, to make a compact representation of an entire
graph only with one global function, without additional message-passing operations.

• We show that existing GNN with our parametric pooling operation can be as powerful as the WL
test, and also be easily extended to the node clustering approaches with learnable clusters.

• We extensively validate GMT for graph classification, reconstruction, and generation tasks on syn-
thetic and real-world graphs, on which it largely outperforms most graph pooling baselines.

3.2 Related Work

Graph Neural Network Existing graph neural network (GNN) models generally encode the nodes
by aggregating the features from the neighbors [6, 35, 36, 86], and have achieved a large success on
node classification and link prediction tasks. Recently, there also exist transformer-based GNNs [37,
87] that further consider the relatedness between nodes in learning the node embeddings. However,
accurately representing the given graph as a whole remains challenging. While using mean or max
over the node embeddings allow to represent the entire graph for graph classification [88, 89], they are
mostly suboptimal, and may output the same representation for two di�erent graphs. To resolve this
problem, recent GNN models [10, 84] aim to make the GNNs to be as powerful as the Weisfeiler-Lehman
test [12] in distinguishing graph structures. Yet, they also rely on simple operations, and we need a more
sophisticated method to represent the entire graph.

Graph Pooling Graph pooling methods play an essential role of representing the entire graph. While
averaging all node features is directly used as simplest pooling methods [81, 90], they result in a loss of
information since they consider all node information equally without considering key features for graphs.
To overcome this limitation, there have been recent studies on graph pooling to compress the given graph
in a task specific manner. Node drop methods use learnable scoring functions to drop nodes with lower
scores [79, 85, 82]. Moreover, node clustering methods cast the graph pooling problem into the node
clustering problem to map the nodes into a set of clusters [80, 91, 92, 83, 93]. Some methods combine
these two approaches by first locally clustering the neighboring nodes, and then dropping unimportant
clusters [94]. Meanwhile, edge clustering gradually merges nodes by contracting high-scoring edges
between them [95]. In addition, Ahmadi et al. [96] model the memory layer to aggregate nodes without
utilizing message-passing after pooling. Finally, there exists a semi-supervised pooling method [97] that
scores nodes with an attention scheme [98], to weight more on the important nodes on pooling.

(Multi-)Set Representation Learning Note that a set of nodes in a graph forms a multiset [10]; a
set that allows possibly repeating elements. Therefore, contrary to the previous set-encoding methods,
which mainly consider non-graph problems [99, 100, 41], we regard the graph representation learning as a
multi-set encoding problem. Mathematically, Zaheer et al. [101] and Qi et al. [99] provide the theoretical
grounds on permutation invariant functions for the set encoding. Further, Lee et al. [102] propose Set
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Transformer, which uses attention mechanism on the set encoding. Building on top of these theoretical
grounds on set, we propose the multiset encoding function that explicitly considers the graph structures.

3.3 Graph Multiset Pooling

We posit the graph representation learning problem as a multiset encoding problem, and then utilize
the graph-structured attention to consider the global graph structure when encoding the given graph.

3.3.1 Preliminaries

We begin with the general descriptions of graph neural network, and graph pooling.

Graph Neural Network A graph G can be represented by its adjacency matrix A œ {0, 1}n◊n

and the node set V with |V| = n nodes, along with the c dimensional node features X œ Rn◊c. Graph
Neural Networks (GNNs) learn feature representation for di�erent nodes using neighborhood aggregation
schemes, which are formalized as the following Message-Passing function:

H
(l+1)
u

= UPDATE(l)
1
H

(l)
u

, AGGREGATE(l)
1Ó

H
(l)
v

, ’v œ N (u)
Ô22

, (3.1)

where H
(l+1) œ Rn◊d is the node features computed after l-steps of the GNN simplified as follows:

H
(l+1) = GNN(l)(H(l)

,A
(l)), UPDATE and AGGREGATE are arbitrary di�erentiable functions, N (u)

denotes a set of neighboring nodes of u, and H
(1)
u is initialized as the input node features Xu.

Graph Pooling While message-passing functions can produce a set of node representations, we need
an additional READOUT function to obtain an entire graph representation hG œ Rd as follows:

hG = READOUT ({Hv | v œ V}) . (3.2)

As a READOUT function, we can simply use the average or sum over all node features Hv, ’v œ V
from the given graph [81, 10]. However, since such aggregation schemes take all node information
equally without considering the graph structures, they lose structural information that is necessary for
accurately representing a graph. To tackle this limitation, Node Drop methods [85, 82] select the high
scored nodes i

(l+1) œ Rnl+1 with learnable score function s at layer l, to drop the unnecessary nodes,
denoted as follows:

y
(l) = s(H(l)

,A
(l)); i

(l+1) = topk(y(l)), (3.3)

where function s depends on specific implementations, and topk function samples the top k nodes by
dropping nodes with low scores y

(l) œ Rnl . Whereas Node Clustering methods [80, 83] learn a cluster
assignment matrix C

(l) œ Rnl◊nl+1 with node features H
(l) œ Rnl◊d, to coarsen the nodes and the

adjacency matrix A
(l) œ Rnl◊nl at layer l as follows:

H
(l+1) = C

(l)T

H
(l); A

(l+1) = C
(l)T

A
(l)
C

(l)
, (3.4)

where generating an assignment matrix C
(l) depends on specific implementations. While these two

approaches obtain decent performances on graph classification tasks, they are suboptimal since node
drop methods unnecessarily drop arbitrary nodes, and node clustering methods have limited scalability
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to large graphs [103, 82]. Therefore, we need a sophisticated graph pooling layer that coarsens the graph
with sparse implementation without discarding nodes.

3.3.2 Graph Multiset Transformer

We now describe the Graph Multiset Transformer (GMT) architecture, which can accurately repre-
sent the entire graph, given a multiset of node features. We first introduce a multiset encoding scheme
that allows to embed two di�erent graphs into distinct embeddings, and then describe the graph multi-
head attention that reflects the graph topology in the attention-based multiset encoding.

Multiset Encoding The input of the graph pooling function READOUT consists of nodes in a graph,
and they form a multiset (i.e. a set that allows for repeating elements) since di�erent nodes can have
identical feature vectors. To design a graph pooling function that is as powerful as the WL test, it needs
to satisfy the permutation invariance and injectiveness over the multiset, since two non-isomorphic graphs
should be embedded di�erently through the injective function. While the simple sum pooling satisfies the
injectiveness over a multiset [10], it may treat all node embeddings equally without consideration of their
relevance to the task. To resolve this issue, we consider attention mechanism on the multiset pooling
function to capture structural dependencies among nodes within a graph, in which we can provably enjoy
the expressive power of the WL test.

Graph Multi-head Attention To overcome the inability of simple pooling methods (e.g. sum) on
distinguishing important nodes, we use the attention mechanism as the main component in our pooling
scheme. Assume that we have n node vectors, and the input of the attention function (Att) consists of
query Q œ Rnq◊dk , key K œ Rn◊dk and value V œ Rn◊dv , where nq is the number of query vectors, n is
the number of input nodes, dk is the dimensionlity of the key vector, and dv is the dimensionality of the
value vector. Then we compute the dot product of the query with all keys, to put more weights on the
relevant values, namely nodes, as follows: Att(Q,K,V ) = w(QK

T )V , where w is an activation function.
Instead of computing a single attention, we can further use a multi-head attention [104], by linearly
projecting the query Q, key K, and value V h times respectively to yield h di�erent representation
subspaces. The output of the multi-head attention function (MH) then can be denoted as follows:

MH(Q,K,V ) = [O1, ..., Oh]WO; Oi = Att(QW
Q

i
,KW

K

i
,V W

V

i
), (3.5)

where the operations for h parallel projections are parameter matrices W
Q

i
œ Rdk◊dk , WK

i
œ Rdk◊dk ,

and W
V

i
œ Rdv◊dv . Also, the output projection matrix is WO œ Rhdv◊dmodel , where dmodel is the output

dimensionality for the multi-head attention (MH) function.
While multi-head attention is superior to trivial pooling methods such as sum or mean as it considers

global dependencies among nodes, the MH function suboptimally generates the key K and value V for
Att, since it linearly projects the obtained node embeddings H from equation 3.1 to further obtain the
key and value pairs. To tackle this limitation, we newly define a novel graph multi-head attention block
(GMH). Formally, given node features H œ Rn◊d with their adjacency information A, we construct the
key and value using GNNs, to explicitly leverage the graph structure as follows:

GMH(Q,H,A) = [O1, ..., Oh]WO; Oi = Att(QW
Q

i
, GNNK

i
(H,A), GNNV

i
(H,A)), (3.6)
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Figure 3.2: Graph Multiset Transformer. Given a graph passed through several message passing layers, we
use an attention-based pooling block (GMPool) and a self-attention block (SelfAtt) to compress the nodes into
few important nodes and consider the interaction among them respectively, within a multiset framework.

where the output of GNNi contains neighboring information of the graph, compared to the linearly
projected node embeddings KW

K

i
and V W

V

i
in equation 3.5, for key and value matrices in Att.

Graph Multiset Pooling with Graph Multi-head Attention Using the ingredients above, we
now propose a graph pooling function that satisfies the injectiveness and permutation invariance, such
that the overall architecture can be at most as powerful as the WL test, while taking the graph structure
into account. Given node features H œ Rn◊d from GNNs, we define a Graph Multiset Pooling (GMPool),
which is inspired by the Transformer [104, 102], to compress the n nodes into the k typical nodes, with a
parameterized seed matrix S œ Rk◊d for the pooling operation that is directly optimized in an end-to-end
fashion, as follows (Figure 3.2-GMPool):

GMPoolk(H,A) = LN(Z + rFF(Z)); Z = LN(S + GMH(S,H,A)), (3.7)

where rFF is any row-wise feedforward layer that processes each individual row independently and
identically, and LN is a layer normalization [105]. Note that the GMH function in equation 3.7 considers
interactions between k seed vectors (queries) in S and n nodes (keys) in H, to compress n nodes into k

clusters with their attention similarities between queries and keys. Also, to extend the pooling scheme
from set to multiset, we simply consider redundant node representations.

Self-Attention for Inter-node Relationship While previously described GMPool condenses entire
nodes into k representative nodes, a major drawback of this scheme is that it does not consider relation-
ships between nodes. To tackle this limitation, one should further consider the interactions among n or
condensed k di�erent nodes. To this end, we propose a Self-Attention function (SelfAtt), inspired by the
Transformer [104, 102], as follows (Figure 3.2-SelfAtt):

SelfAtt(H) = LN(Z + rFF(Z)); Z = LN(H + MH(H,H,H)), (3.8)

where, compared to GMH in equation 3.7 that considers interactions between k vectors and n nodes,
SelfAtt captures inter-relationships among n nodes by putting node embeddings H on both query and
key locations in MH of equation 3.8. To satisfy the injectiveness property of SelfAtt, it might not consider
interactions among n nodes, which we discuss in Proposition 3.3.3 of Subsection 3.3.3.

Overall Architecture We now describe the full structure of Graph Multiset Transformer (GMT)
consisting of GNN and pooling layers using ingredients above (See Figure 3.2). For a graph G with node
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features X and an adjacency matrix A, the Encoder : G ‘æ H œ Rn◊d is denoted as follows:

Encoder(X,A) = GNN2(GNN1(X,A),A), (3.9)

where we can stack several GNNs to construct the deep structures. After obtaining a set of node
features H from an encoder, the pooling layer aggregates the features into a single vector form; Pooling
: H,A ‘æ hG œ Rd. To deal with a large number of nodes, we first condense the entire graph into k

representative nodes with Graph Multiset Pooling (GMPool), which is also adaptable to the varying size
of nodes, and then utilize the interaction among them with Self-Attention Block (SelfAtt). Finally, we
get the entire graph representation by using GMPool with k = 1 as follows:

Pooling(H,A) = GMPool1(SelfAtt(GMPoolk(H,A)),AÕ), (3.10)

where A
Õ œ Rk◊k is the identity or coarsened adjacency matrix since adjacency information should be

adjusted after compressing the nodes from n to k with GMPoolk (See Appendix 3.6.1 for details).

3.3.3 Connection with Weisfeiler-Lehman Isomorphism Test

Weisfeiler-Lehman (WL) graph isomorphism test [12] is known for its ability to e�ciently distin-
guish two di�erent graphs. Recent studies [84, 10] show that GNNs can be made to be as powerful as
the WL test, by using an injective function over a multiset to map two di�erent graphs into distinct
spaces. Building on previous powerful GNNs, if our graph pooling function is injective, then our overall
architecture can be at most as powerful as the WL test. To do so, we first recount the theorem from Xu
et al. [10], as formalized in Theorem 3.3.1.

Theorem 3.3.1: Non-isomorphic Graphs to Di�erent Embeddings

Let A : G æ Rd be a GNN, and Weisfeiler-Lehman test decides two graphs G1 œ G and G2 œ G as
non-isomorphic. Then, A maps two di�erent graphs G1 and G2 to distinct vectors if node aggre-
gation and update functions are injective, and graph-level readout, which operates on a multiset
of node features {Hi}, is injective.

Proof. To map two non-isomorphic graphs to distinct embedding spaces with GNNs, we recount the
theorem on Graph Isomorphism Network. See Appendix B of Xu et al. [10] for details.

Since we focus on the representation of graphs through pooling, we deal with the injectiveness of the
READOUT function. Our next Lemma 3.3.2 states that GMPool can represent the injective function.

Lemma 3.3.2: Injectiveness on Graph Multiset Pooling

Assume the input feature space H is a countable set. Then the output of GMPooli
k
(H,A) with

GMH(Si,H,A) for a seed vector Si can be unique for each multiset H µ H of bounded size.
Further, the output of full GMPoolk(H,A) constructs a multiset with k elements, which are also
unique on the input multiset H.

Proof. We first state that the GNNs of the Graph Multi-head Attention (GMH) in a GMPool can
represent the injective function over the multiset H with an adjacency information A, by selecting proper
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message-passing functions that satisfy the WL test [10, 84], denoted as follows: H Õ = GNN(H,A), where
H

Õ µ H. Then, given enough elements in the multiset, a GMPooli
k
(H,A) can express the sum pooling

over the multiset H
Õ defined as follows: fl(

q
hœHÕ f(h)), where f and fl are mapping functions (see the

proof of PMA in Lee et al. [102]).
Since H is a countable set, there is a mapping from elements to prime numbers denoted by p(h) : H æ

P. If we let f(h) = ≠ log p(h), then
q

hœHÕ f(h) = log
r

hœHÕ
1

p(h) which constitutes an unique mapping
for every multiset H

Õ µ H (see Wagsta� et al. [106]). In other words,
q

hœHÕ f(h) is injective. Also,
we can easily construct a function fl, such that GMPooli

k
(H,A) = fl(

q
hœHÕ f(h)) = fl(log

r
hœHÕ

1
p(h) )

is injective for every multiset H µ H, where H
Õ is derived from the GNN component in the GMPool;

H
Õ = GNN(H,A).

Furthermore, since a GMPool considers multiset elements without any order, it satisfies the permu-
tation invariance condition for the multiset function.

Finally, each GMPool block has k components such that the output of it consists of k elements as
follows: GMPool =

)
GMPooli

k
(H,A)

*k

i=1, which allows multiple instances for its elements. Then, since
each GMPooli

k
(H,A) is unique on the input multiset H, the output of the GMPool that consists of k

outputs is also unique on the input multiset H.

Thanks to the universal approximation theorem [107], we can construct such functions p and fl using
multi-layer perceptrons (MLPs).

Based upon the injectiveness of GMPool, we further show the injectiveness of SelfAtt, to make
an overall architecture (a sequence of GMPool and SelfAtt with GNNs) as powerful as the WL test,
formalized in Proposition 3.3.3.

Proposition 3.3.3: Injectiveness on Graph Multiset Transformer

The overall Graph Multiset Transformer with multiple GMPool and SelfAtt can map two di�erent
graphs G1 and G2 to distinct embedding spaces, such that the resulting GNN with proposed pooling
functions can be as powerful as the WL test.

Proof. By Lemma 3.3.2, we know that a Graph Multiset Pooling (GMPool) can represent the injective
function over the input multiset H µ H. If we can also show that a Self-Attention (SelfAtt) can represent
the injective function over the multiset, then the sequence of the GMPool and SelfAtt blocks can satisfy
the injectiveness.

Let W
O be a zero matrix in the SelfAtt function. SelfAtt(H) then can be approximated to any

instance-wise feed-forward networks denoted as follows: SelfAtt(H) = rFF(H). Therefore, this rFF is a
suitable transformation „ : Rd æ Rd that can be easily constructed over the multiset elements h œ H,
to satisfy the injectiveness.

To maximize the discriminative power of the Graph Multiset Transformer (GMT) by satisfying the
WL test, we assume that SelfAtt does not consider the interactions among multiset elements, namely
nodes. While proper GNNs with the proposed pooling function can be at most as powerful as the WL
test with this assumption, our experimental results with the ablation study show that the interaction
among nodes is significantly important to distinguish the broad classes of graphs (See Table 3.2).
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3.3.4 Connection with Node Clustering Approaches

Node clustering is widely used for coarsening a graph in a hierarchical manner, as described in the
equation 3.4. However, since they require to store and even multiply the adjacency matrix A with the
soft assignment matrix C: A

(l+1) = C
(l)T

A
(l)
C

(l), they need a quadratic space O(n2) for n nodes,
which is problematic for large graphs. Meanwhile, our GMPool does not compute a coarsened adjacency
matrix A

(l+1), such that graph pooling is possible only with a sparse implementation, as formalized in
Theorem 3.3.4.

Theorem 3.3.4: Space Complexity of Graph Multiset Pooling

Graph Multiset Pooling condsense a graph with n nodes to k nodes in O(nk) space complexity,
which can be further optimized to O(n).

Proof. Assume that we have key K œ Rn◊dk and value V œ Rn◊dv matrices in the Att function of
Graph Multi-head Attention (GMH) for the simplicity, which is described in the equation 3.6. Also, Q
is defined as a seed vector S œ Rk◊d in the GMPool function of the equation 3.7. To obtain the weights
on the values V , we multiply the query Q with key K: QK

T . This matrix multiplication then maps a
set of n nodes into a set of k nodes, such that it requires O(nk) space complexity. Also, we can further
drop the constant term k: O(n), by properly setting the small k values; k π n.

The multiplication of the attention weights QK
T with value V also takes the same complexity, such

that the overall space complexity of GMPool is O(nk), which can be further optimized to O(n).

The space complexity of GNNs with sparse implementation requires O(n + m) space complexity,
where n is the number of nodes, and m is the number of edges in a graph. Therefore, multiple GNNs
followed by our GMPool require the total space complexity of O(n + m) due to the space complexity of
the GNN operations. However, GNNs with our GMPool are more e�cient than node clustering methods,
since node clustering approaches need O(n2) space complexity.

In spite of this huge strength on space complexity, our GMPool can be further approximated to the
node clustering methods by manipulating an adjacency matrix, as formalized in Proposition 3.3.5.

Proposition 3.3.5: Approximation to Node Clustering

Graph Multiset Pooling GMPoolk can perform hierarchical node clustering with learnable k cluster
centroids by Seed Vector S in equation 3.7.

Proof. Node clustering approaches are widely used to coarsen a given large graph in a hierarchical manner
with several message-passing functions. The core part of the node clustering schemes is to generate a
cluster assignment matrix C, to coarsen nodes and adjacency matrix as in an equation 3.4. Therefore, if
our Graph Multiset Pooling (GMPool) can generate a cluster assignment matrix C, then the proposed
GMPool can be directly approximated to the node clustering approaches.

In the proposed GMPool, query Q is generated from a learnable set of k seed vectors S, and key K

and value V are generated from node features H with GNNs in the Graph Multi-head Attention (GMH)
block, as in an equation 3.6. In this function, if we decompose the attention function Att(Q,K,V ) =
w(QK

T )V into the dot products of the query with all keys, and the corresponding weighted sum
of values, then the first dot product term inherently generates a soft assignment matrix as follows:
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C = w(QK
T ). Therefore, the proposed GMPool can be easily extended to the node clustering schemes,

with the inherently generated cluster assignment matrix; C = w(QK
T ), where one of the proper choices

for the activation function w is the softmax function as follows:

w(QK
T )i,j =

exp(QiK
T

j
)

q
k

n=1 exp(QnK
T

j
)
. (3.11)

Furthermore, through the learnable seed vectors S for the query Q, we can learn data dependent k

di�erent cluster centroids in an end-to-end fashion.

Note that, as shown in Subsection 3.4.2 of the main paper, the proposed GMPool significantly
outperforms the previous node clustering approaches [80, 83]. This is because, contrary to them, the
proposed GMPool can explicitly learn data dependent k cluster centroids by learnable seed vectors S.

3.4 Experiment

To validate the proposed Graph Multiset Transformer (GMT) for graph representation learning, we
evaluate it on classification, reconstruction and generation tasks of synthetic and real-world graphs.

3.4.1 Graph Classification

Objective The goal of graph classification is to predict a label yi œ Y of a given graph Gi œ G, with a
mapping function f : G æ Y. To this end, we use a set of node representations {Hv | v œ V} to obtain
an entire graph representation hG that is used to classify a label f(G) = ŷ. We then learn f with a
cross-entropy loss, to minimize the negative log likelihood as follows: min

q
i=1 ≠yi log ŷi.

Datasets Among TU datasets [108], we select 6 datasets including 3 datasets (D&D, PROTEINS,
and MUTAG) on Biochemical domain, and 3 datasets (IMDB-B, IMDB-M, and COLLAB) on Social
domain with accuracy for evaluation metric. Also, we use 4 molecule datasets (HIV, Tox21, ToxCast,
BBBP) from the OGB datasets [109] with ROC-AUC for evaluation metric. Statistics are reported in
the Table 3.1, and more details are described in the Appendix 3.6.3.

Models 1) GCN. 2) GIN. GNNs with mean or sum pooling [6, 10]. 3) Set2Set. Set pooling
baseline [110]. 4) SortPool. 5) SAGPool. 6) TopKPool. 7) ASAP. The methods [79, 82, 85, 94]
that use the node drop, by dropping nodes (or clusters) with lower scores using scoring functions. 8)
Di�Pool. 9) MinCutPool. 10) HaarPool. 11) StructPool. The methods [80, 83, 92, 93] that use
the node clustering, by grouping a set of nodes into a set of clusters using a cluster assignment matrix.
12) EdgePool. The method [95] that gradually merges two adjacent nodes that have a high score edge.
13) GMT. The proposed Graph Multiset Transformer (See Appendix 3.6.2 for detailed descriptions).

Implementation Details For a fair comparison of pooling baselines [82], we fix the GCN [6] as a
message passing layer. We evaluate the model performance on TU datasets for 10-fold cross validation [79,
10] with LIBSVM [111]. Also, we use the initial node features following the fair comparison setup [112].
We evaluate the performance on OGB datasets with their original feature extraction and data split
settings [109]. Experimental details are described in the Appendix 3.6.3.
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Table 3.1: Graph classification results on test sets. The reported results are mean and standard deviation
over 10 di�erent runs. Best performance and its comparable results (p > 0.05) from the t-test are marked in
bold. Hyphen (-) denotes out-of-resources that take more than 10 days (See Figure 3.4 for the time e�ciency
analysis).

Biochemical Domain Social Domain Significance
D&D PROTEINS MUTAG HIV Tox21 ToxCast BBBP IMDB-B IMDB-M COLLAB

# graphs 1,178 1,113 188 41,127 7,831 8,576 2,039 1,000 1,500 5,000 -
# classes 2 2 2 2 12 617 2 2 3 3 -
Avg # nodes 284.32 39.06 17.93 25.51 18.57 18.78 24.06 19.77 13.00 74.49 -
GCN 72.05 ± 0.55 73.24 ± 0.73 69.50 ± 1.78 76.81 ± 1.01 75.04 ± 0.80 60.63 ± 0.51 65.47 ± 1.73 73.26 ± 0.46 50.39 ± 0.41 80.59 ± 0.27 3 / 10
GIN 70.79 ± 1.17 71.46 ± 1.66 81.39 ± 1.53 75.95 ± 1.35 73.27 ± 0.84 60.83 ± 0.46 67.65 ± 3.00 72.78 ± 0.86 48.13 ± 1.36 78.19 ± 0.63 2 / 10
Set2Set 71.94 ± 0.56 73.27 ± 0.85 69.89 ± 1.94 74.70 ± 1.65 74.10 ± 1.13 59.70 ± 1.04 66.79 ± 1.05 72.90 ± 0.75 50.19 ± 0.39 79.55 ± 0.39 1 / 10
SortPool 75.58 ± 0.72 73.17 ± 0.88 71.94 ± 3.55 71.82 ± 1.63 69.54 ± 0.75 58.69 ± 1.71 65.98 ± 1.70 72.12 ± 1.12 48.18 ± 0.83 77.87 ± 0.47 0 / 10
Di�Pool 77.56 ± 0.41 73.03 ± 1.00 79.22 ± 1.02 75.64 ± 1.86 74.88 ± 0.81 62.28 ± 0.56 68.25 ± 0.96 73.14 ± 0.70 51.31 ± 0.72 78.68 ± 0.43 3 / 10
SAGPool(G) 71.54 ± 0.91 72.02 ± 1.08 76.78 ± 2.12 74.56 ± 1.69 71.10 ± 1.06 59.88 ± 0.79 65.16 ± 1.93 72.16 ± 0.88 49.47 ± 0.56 78.85 ± 0.56 0 / 10
SAGPool(H) 74.72 ± 0.82 71.56 ± 1.49 73.67 ± 4.28 71.44 ± 1.67 69.81 ± 1.75 58.91 ± 0.80 63.94 ± 2.59 72.55 ± 1.28 50.23 ± 0.44 78.03 ± 0.31 1 / 10
TopKPool 73.63 ± 0.55 70.48 ± 1.01 67.61 ± 3.36 72.27 ± 0.91 69.39 ± 2.02 58.42 ± 0.91 65.19 ± 2.30 71.58 ± 0.95 48.59 ± 0.72 77.58 ± 0.85 0 / 10
MinCutPool 78.22 ± 0.54 74.72 ± 0.48 79.17 ± 1.64 75.37 ± 2.05 75.11 ± 0.69 62.48 ± 1.33 65.97 ± 1.13 72.65 ± 0.75 51.04 ± 0.70 80.87 ± 0.34 4 / 10
StructPool 78.45 ± 0.40 75.16 ± 0.86 79.50 ± 1.75 75.85 ± 1.81 75.43 ± 0.79 62.17 ± 1.61 67.01 ± 2.65 72.06 ± 0.64 50.23 ± 0.53 77.27 ± 0.51 3 / 10
ASAP 76.58 ± 1.04 73.92 ± 0.63 77.83± 1.49 72.86 ± 1.40 72.24 ± 1.66 58.09 ± 1.62 63.50 ± 2.47 72.81 ± 0.50 50.78 ± 0.75 78.64 ± 0.50 1 / 10
EdgePool 75.85 ± 0.58 75.12 ± 0.76 74.17± 1.82 72.66 ± 1.70 73.77 ± 0.68 60.70 ± 0.92 67.18 ± 1.97 72.46 ± 0.74 50.79 ± 0.59 - 3 / 9
HaarPool - - 66.11± 1.50 - - - 66.11 ± 0.82 73.29 ± 0.34 49.98 ± 0.57 - 1 / 5
GMT (Ours) 78.72 ± 0.59 75.09 ± 0.59 83.44 ± 1.33 77.56 ± 1.25 77.30 ± 0.59 65.44 ± 0.58 68.31 ± 1.62 73.48 ± 0.76 50.66 ± 0.82 80.74 ± 0.54 10 / 10

Model D&D PROTEINS BBBP

GMT 78.72 75.09 68.31

w/o message passing 78.06 75.07 65.26

w/o graph attention 78.08 74.50 66.21
w/o self-attention 75.13 74.22 64.53
mean pooling 72.05 73.24 65.47

Table 3.2: Ablation Study of GMT
on the D&D, PROTEINS, and BBBP
datasets for graph classification.

Figure 3.3: Memory e�ciency of
GMT compared with baselines. X
indicates out-of-memory error.

Figure 3.4: Time e�ciency of
GMT compared with baselines. X
indicates out-of-memory error.

Classification Results Table 3.1 shows that our GMT outperforms most baselines, or achieves com-
parable performance to the best baseline results. These results demonstrate that our method is simple
yet powerful as it only performs a single global operation at the final layer, unlike several baselines that
use multiple pooling with a sequence of message passing (See Figure 3.9 for the detailed model archi-
tectures). Note that, since graph classification tasks mostly require the discriminative information to
predict the labels of a graph, GNN baselines without parametric pooling, such as GCN and GIN, some-
times outperform pooling baselines on some datasets. In addition, recent work [113], which reveals that
message-passing layers are dominant in the graph classification, supports this phenomenon. Therefore,
we conduct experiments on graph reconstruction to directly quantify the amount of retained information
after pooling, which we describe in the next subsection.

Ablation Study To see where the performance improvement comes from, we conduct an ablation
study on GMT by removing graph attention, self attention, and message-passing operations. Table 3.2
shows that using graph attention with self-attention helps significantly improve the performances from
the mean pooling. Further, performances of the GMT without message-passing layers indicate that our
pooling layer well captures the graph multiset structure only with pooling without GNNs.

E�ciency While node clustering methods achieve decent performances in Table 3.1, they are known
to su�er from large memory usage since they cannot work with sparse graph implementations. To
compare the GPU Memory E�ciency of GMT with baseline models, we test it on the Erdos-Renyi
graphs [114] (See Appendix 3.6.3 for detail setup). Figure 3.3 shows that our GMT is highly e�cient in
terms of memory thanks to its compatibility with sparse graphs, making it more practical over memory-
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(e) GMPool(d) MinCutPool(c) DiffPool(b) TopKPool(a) Original

Figure 3.5: Reconstruction results of ring and grid
synthetic graphs, compared to node drop and clus-
tering methods. See Figure 3.10 for high resolution.

Figure 3.6: Reconstruction results on the ZINC molecule
dataset by varying the compression ratio. Solid lines denote
the mean, and shaded areas denote the variance.

heavy pooling baselines. In addition to this, we measure the Time E�ciency to further validate the
practicality of GMT in terms of time complexity. We validate it with the same Erdos-Renyi graphs (See
Appendix 3.6.3 for detail setup). Figure 3.4 shows that GMT takes less than (or nearly about) a second
even for large graphs, compared to the slowly working models such as HaarPool and EdgePool. This
result further confirms that our GMT is practically e�cient.

3.4.2 Graph Reconstruction

Graph classification does not directly measure the expressiveness of GNNs since identifying dis-
criminative features may be more important than accurately representing graphs. Meanwhile, graph
reconstruction directly quantifies the graph information retained by condensed nodes after pooling.

Objective For graph reconstruction, we train an autoencoder to reconstruct the input node features
X œ Rn◊c from their pooled representations X

pool œ Rk◊c. The learning objective to minimize the
discrepancy between the original graph X and the reconstructed graph X

rec with a cluster assignment
matrix C œ Rn◊k is denoted as follows: minÎX ≠ X

recÎ, where X
rec = CX

pool
.

Experimental Setup We first experiment with Synthetic Graph, such as ring and grid [83], that
can be represented in a 2-D Euclidean space, where the goal is to restore the location of each node
from pooled features, with an adjacency matrix. We further experiment with real-world Molecule
Graph, namely ZINC datasets [115], which consists of 12K molecular graphs. See Appendix 3.6.4 for
the experimental details including model descriptions.

Reconstruction Results Figure 3.5 shows the original and the reconstructed graphs for Synthetic
Graph of ring and grid structures. The noisy results of baselines indicate that the condensed node
features do not fully capture the original graph structure. Whereas our GMPool yields almost perfect
reconstruction, which demonstrates that our pooling operation learns meaningful representation without
discarding the original graph information. We further validate the reconstruction performance of the
proposed GMPool on the real-world Molecule Graph, namely ZINC, by varying the compression ratio.
Figure 3.6 shows reconstruction results on the molecule graph, on which GMPool largely outperforms all
compared baselines in terms of validity, exact match, and accuracy (High score indicates the better, and
see Appendix 3.6.4 for the detailed description of evaluation metrics). With given results, we demonstrate
that our GMPool can be easily extended to the node clustering schemes, while it is powerful enough to
encode meaningful information to reconstruct the graph.
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Figure 3.8: Validity curve for molecule generation
on QM9 dataset from MolGAN. Solid lines denote
the mean and shaded areas denote the variance.

Top-k accuracy: 1 3 5 10 20 50
Reaction GLN 51.41 67.55 74.92 83.48 88.64 92.37

Class MinCutPool 51.17 67.47 75.59 83.68 89.31 92.31
Unknown GMT (Ours) 51.83 68.20 75.17 83.20 89.33 92.47
Reaction GLN 63.53 78.27 84.32 89.51 92.17 93.17

Class MinCutPool 63.91 79.19 84.76 89.69 92.13 93.23
as Prior GMT (Ours) 64.17 79.61 85.32 89.97 92.31 93.25

Table 3.3: Top-k accuracy for retrosynthesis experiment
on USPTO-50k data, for cases where the reaction class is
given as prior information (Bottom) and not given (Top).

(A.1)
A. MinCutPool

B. GMT

(1) Ground Truth with Clusters

(B.1)

(A.2)

(B.2)

(2) Predicted [     : failure]

Figure 3.7: Reconstruction example with as-
signed clusters as colors on left and reconstructed
molecules on right.

Qualitative Analysis We visualize the reconstruc-
tion examples from ZINC in Figure 3.7, where col-
ors in the left figure indicate the assigned clusters on
each atoms, and red dashed circles indicate the incor-
rectly predicted atoms on the reconstructed molecule.
As shown in Figure 3.7, GMPool yields more cali-
brated clustering than MinCutPool, capturing the de-
tailed substructures, which results in the successful re-
construction (See Figure 3.11 in Appendix D for more
reconstruction examples).

3.4.3 Graph Generation

Objective Graph generation is used to generate a valid graph that satisfies the desired properties, in
which graph encoding is used to improve the generation performances. Formally, given a graph G with
graph encoding function f , the goal here is to generate a valid graph Ḡ œ G of desired property y with
graph decoding function g as follows: min d(y, Ḡ), where Ḡ = g(f(G)). d is a distance metric between
the generated graph and desired properties, to guarantee that the graph has them.

Experimental Setup To evaluate the applicability of our model, we experiment on Molecule Gen-
eration to stably generate the valid molecules with MolGAN [116], and Retrosynthesis to empower
the synthesis performances with Graph Logic Network (GLN) [117], by replacing their graph embedding
function f(G) to ours. In both experiments, we replace the average pooling to either the MinCutPool or
GMT. See Appendix 3.6.5 for more experimental details.

Generation Results The power of a discriminator distinguishing whether a molecule is real or fake
is highly important to create a valid molecule in MolGAN. Figure 3.8 shows the validity curve on
the early stage of MolGAN training for Molecule Generation, and the representation power of GMT
significantly leads to the stabilized generation of valid molecules than baselines. Further, Table 3.3 shows
Retrosynthesis results, where we use the GLN as a backbone architecture. Similar to the molecule
generation, retrosynthesis with GMT further improves the performances, which suggests that GMT can
replace existing pooling methods for improved performances on diverse graph tasks.
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3.5 Conclusion

In this work, we pointed out that existing graph pooling approaches either do not consider the task
relevance of each node (sum or mean) or may not satisfy the injectiveness (node drop and clustering
methods). To overcome such limitations, we proposed a novel graph pooling method, Graph Multiset
Transformer (GMT), which not only encodes the given set of node embeddings as a multiset to uniquely
embed two di�erent graphs into two distinct embeddings, but also considers both the global structure
of the graph and their task relevance in compressing the node features. We theoretically justified that
the proposed pooling function is as powerful as the WL test, and can be extended to the node clustering
schemes. We validated the proposed GMT on 10 graph classification datasets, and our method outper-
formed state-of-the-art graph pooling models on most of them. We further showed that our method is
superior to the existing graph pooling approaches on graph reconstruction and generation tasks, which
require more accurate representations of the graph than classification tasks. We strongly believe that the
proposed pooling method will bring substantial practical impact, as it is generally applicable to many
graph-learning tasks that are becoming increasingly important.

3.6 Appendix

3.6.1 Details for Graph Multiset Transformer Components

In this section, we describe the Graph Multiset Pooling (GMPool) and Self-Attention (SelfAtt),
which are the main components of the proposed Graph Multiset Transformer, in detail.

Graph Multiset Pooling The core components of the Graph Multiset Pooling (GMPool) is the Graph
Multi-head Attention (GMH) that considers the graph structure into account, by constructing the key
K and value V using GNNs, as described in the equation 3.6. As shown in the Table 3.2 of the main
paper, this graph multi-head attention significantly outperforms the naive multi-head attention (MH
in equation 3.5). However, after compressing the n nodes into the k nodes with GMPoolk, we can not
directly perform further GNNs since the original adjacency information is useless after pooling. To tackle
this limitation, we can generate the new adjacency matrix A

Õ for the compressed nodes, by performing
node clustering as described in Proposition 5 of the main paper as follows:

GMPool1(GMPoolk(H,A),AÕ); A
Õ = C

T
AC, (3.12)

where C is the generated cluster assignment matrix, and A
Õ is the coarsened adjacency matrix as

described in the equation 3.4. However, this approach is well known for their scalability issues [82, 103],
since they require quadratic space O(n2) to store and even multiply the adjacency matrix A with the
soft assignment matrix C. Therefore, we leave doing this as a future work, and use the following trick.
By replacing the adjacency matrix A with the identity matrix I in the GMPool except for the first block,
we can easily perform multiple GMPools without any constraints, which is approximated to the GMPool
with MH in the equation 3.5, rather than GMH in the equation 3.6, as follows:

GMPool1(GMPoolk(H,A),AÕ); A
Õ = I. (3.13)
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Self-Attention The Self-Attention (SelfAtt) function can consider the inter-relationships between
nodes in a set, which helps the network to take the global graph structure into account. Because of
this advantage, the self-attention function significantly improves the proposed model performance on the
graph classification tasks, as shown in the Table 3.2 of the main paper. From a di�erent perspective,
we can regard the Self-Attention function as a graph neural network (GNN) with a complete graph.
Specifically, given k nodes from the previous layer, the Multi-head Attention (MH) of the Self-Attention
function first constructs the adjacency matrix among all nodes with their similarities, through the matrix
multiplication of the query with key: QK

T , and then computes the outputs with the sum of the ob-
tained weights on the value. In other words, the self-attention function can be considered as one message
passing function with a soft adjacency matrix, which might be further connected to the Graph Attention
Network [36].

3.6.2 Baselines and Our Model

1) GCN. This method [6] is the mean pooling baseline with Graph Convolutional Network (GCN)
as a message passing layer.

2) GIN. This method [10] is the sum pooling baseline with Graph Isomorphism Network (GIN) as
a message passing layer.

3) Set2Set. This method [110] is the set pooling baseline that uses a recurrent neural network to
encode a set of all nodes, with content-based attention over them.

4) SortPool. This method [79] is the node drop baseline that drops unimportant nodes by sorting
their representations, which are directly generated from the previous GNN layers.

5) SAGPool. This method [82] is the node drop baseline that selects the important nodes, by
dropping unimportant nodes with lower scores that are generated by the another graph convolutional
layer, instead of using scores from the previously passed layers. Particularly, this method has two
variants. 5.1) SAGPool(G) is the global node drop method that drops unimportant nodes one time
at the end of their architecture. 5.2) SAGPool(H) is the hierarchical node drop method that drops
unimportant nodes sequentially with multiple graph convolutional layers.

6) TopkPool. This method [85] is the node drop baseline that selects the top-ranked nodes using
a learnable scoring function.

7) ASAP. This method [94] is the node drop baseline that first locally generates the clusters with
neighboring nodes, and then drops the lower score clusters using a scoring function.

8) Di�Pool. This method [80] is the node clustering baseline that produces the hierarchical repre-
sentation of the graphs in an end-to-end fashion, by clustering similar nodes into the few nodes through
graph convolutional layers.

9) MinCutPool. This method [83] is the node clustering baseline that applies the spectral clus-
tering with GNNs, to coarsen the nodes and the adjacency matrix of a graph.

10) HaarPool. This method [92] is the spectral-based pooling baseline that compresses the node
features with a nonlinear transformation in a Haar wavelet domain. Since it directly uses the spectral
clustering to generate a coarsened matrix, the time complexity cost is relatively higher than other pooling
methods.

11) StructPool. This method [93] is the node clustering baseline that integrates the concept of
the conditional random field into the graph pooling. While this method can be used with a hierarchical
scheme, we use it with a global scheme following their original implementation, which is similar to the
SortPool [79].
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Figure 3.9: Illustration of High-level Model Architectures. (Top): Global Graph Classification; GCN,
GIN, Set2Set, SortPool, SAGPool(G), StructPool, GMT. (Middle:) Hierarchical Graph Classification; Di�Pool,
SAGPool(H), TopKPool, MinCutPool, ASAP, EdgePool, HaarPool. (Bottom:) Graph Reconstruction; Di�Pool,
TopKPool, MinCutPool, GMT. MP denotes the message passing layer.

12) EdgePool. This method [95] is the edge clustering baseline that gradually merges the nodes,
by contracting the high score edge between two adjacent nodes.

13) GMT. Our Graph Multiset Transformer that first condenses all nodes into the important
nodes by GMPool, and then considers interactions between nodes in a set. Since it operates on the
global READOUT layer, it can be coupled with hierarchical pooling methods by replacing their last
layer.

3.6.3 Experimental Details on Graph Classification

Dataset Among TU datasets [108], we select the 6 datasets including 3 datasets (D&D, PROTEINS,
and MUTAG) on Biochemical domain, and 3 datasets (IMDB-B, IMDB-M, and COLLAB) on Social
domain. We use the classification accuracy as an evaluation metric. As suggested by Errica et al. [112]
for a fair comparison, we use the one-hot encoding of their atom types as initial node features in the
bio-chemical datasets, and the one-hot encoding of node degrees as initial node features in the social
datasets. Moreover, we use the recently suggested 4 molecule graphs (HIV, Tox21, ToxCast, BBBP)
from the OGB datasets [109]. We use the ROC-AUC for an evaluation metric, and use the additional
atom and bond features, as suggested by Hu et al. [109]. Dataset statistics are reported in the Table 3.1
of the main paper.

Implementation Details on Classification Experiments For all experiments on TU datasets, we
evaluate the model performance with a 10-fold cross validation setting, where the dataset split is based
on the conventionally used training/test splits [118, 79, 10], with LIBSVM [111]. In addition, we use the
10 percent of the training data as a validation data following the fair comparison setup [112]. For all
experiments on OGB datasets, we evaluate the model performance following the original training/vali-
dation/test dataset splits [109]. We use the early stopping criterion, where we stop the training if there
is no further improvement on the validation loss during 50 epochs, for the TU datasets. Further, the
maximum number of epochs is set to 500. We then report the average performances on the validation
and test sets, by performing overall experiments 10 times with di�erent seeds.

For all experiments on TU datasets except the D&D, the learning rate is set to 5 ◊ 10≠4, hidden

36



size is set to 128, batch size is set to 128, weight decay is set to 1 ◊ 10≠4, and dropout rate is set to 0.5.
Since the D&D dataset has a large number of nodes (See Table 3.1 in the main paper), node clustering
methods can not perform clustering operations on large graphs with large batch sizes, such that the
hidden size is set to 32, and batch size is set to 10 on the D&D dataset. For all experiments on OGB
datasets except the HIV, the learning rate is set to 1 ◊ 10≠3, hidden size is set to 128, batch size is set
to 128, weight decay is set to 1 ◊ 10≠4, and dropout rate is set to 0.5. Since the HIV dataset contains
a large number of graphs compared to others (See Table 3.1 in the main paper), the batch size is set to
512 for fast training. Then we optimize the network with Adam optimizer [75]. For a fair comparison
of baselines [82], we use the three GCN layers [6] as a message passing function for all models with
jumping knowledge strategies [119], and only change the pooling architecture throughout all models, as
illustrated in Figure 3.9. Also, we set the pooling ratio as 25% in each pooling layer for both baselines
and our models.

Implementation Details on E�ciency Experiments To compare the GPU memory e�ciency
of GMT against baseline models including node drop and node clustering methods, we first generate the
Erdos-Renyi graphs [114] by varying the number of nodes n, where the edge size m is twice the number
of nodes: m = 2n. For all models, we compress the given n nodes into the k = 4 nodes at the first
pooling function.

To compare the time e�ciency of GMT against baseline models, we first generate the Erdos-
Renyi graphs [114] by varying the number of nodes n with m = n

2
/10 edges, following the setting of

HaarPool [92]. For all models, we set the pooling ratio as 25% except for HaarPool, since it compresses
the nodes according to the coarse-grained chain of a graph. We measure the forward time, including
CPU and GPU, for all models with 50 graphs over one batch.

3.6.4 Experimental Details on Graph Reconstruction

Dataset We first experiment with synthetic graphs represented in a 2-D Euclidean space, such as ring
and grid structures. The node features of a graph consist of their location in a 2-D coordinate space, and
the adjacency matrix indicates the connectivity pattern of nodes. The goal here is to restore all node
locations from compressed features after pooling, with the intact adjacency matrix.

While synthetic graphs are appropriate choices for the qualitative analysis, we further do the quan-
titative evaluation of models with real-world molecular graphs. Specifically, we use the subset [120] of
the ZINC dataset [115], which consists of 12K real-world molecular graphs, to further conduct a graph
reconstruction on the large number of various graphs. The goal of the molecule reconstruction task is to
restore the exact atom types of all nodes in the given graph, from the compressed representations after
pooling.

Common Implementation Details Following Bianchi et al. [83], we use the two message passing
layers both right before the pooling operation and right after the unpooling operation. Also, both pooling
and unpooling operations are performed once and sequentially connected, as illustrated in the Figure 3.9.
We compare our methods against both the node drop (TopKPool [85]) and node clustering (Di�Pool [80]
and MinCutPool [83]) methods. For the node drop method, we use the unpooling operation proposed in
the graph U-net [85]. For the node clustering methods, we use the graph coarsening schemes described
in the equation 3.4, with their specific implementations on generating an assignment matrix. For our
proposed method, we only use the one Graph Multiset Pooling (GMPool) without SelfAtt, where we
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Figure 3.10: High resolution images for synthetic graph reconstruction results in Figure 3.5.

follow the node clustering approaches as described in the subsection 3.3.4 by generating a single soft
assignment matrix with one head h = 1 in the multi-head attention function. For experiments of both
synthetic and molecule reconstructions, the learning rate is set to 5 ◊ 10≠3, and hidden size is set to 32.
We then optimize the network with Adam optimizer [75].

Implementation Details on Synthetic Graph We set the pooling ratio of all models as 25%. For
the loss function, we use the Mean Squared Error (MSE) to train models. We use the early stopping
criterion, where we stop the training if there is no further improvement on the training loss during 1,000
epochs. Further, the maximum number of epochs is set to 10,000. Note that, there is no other available
graphs for validation of the synthetic graph, such that we train and test the models only with the given
graph in the Figure 3.10. The baseline results are adopted from Bianchi et al. [83].

Implementation Details on Molecule Graph We set the pooling ratio of all models as 5%, 10%,
15%, and 25%, and plot all results in the Figure 3.6 of the main paper. Note that, in the case of molecule
graph reconstruction, a softmax layer is appended at the last layer of the model architecture to classify
the original atom types of all nodes. For the loss function, we use the cross entropy loss to train models.
We use the early stopping criterion, where we stop the training if there is no further improvement
on the validation loss during 50 epochs. Further, the maximum number of epochs is set to 500, and
batch size is set to 128. Note that, in the case of molecule graph reconstruction on the ZINC dataset,
we strictly separate the training, validation and test sets, as suggested by Dwivedi et al. [120]. We
perform all experiments 5 times with 5 di�erent random seeds, and then report the averaged result with
the standard deviation. Note that, in addition to baselines mentioned in the common implementation
details paragraph, we compare two more baselines: GCN with a random assignment matrix for pooling,
which is adopted from Mesquita et al. [113], and StructPool [93], for the real-world molecule graph
reconstruction.

Evaluation Metrics for Molecule Reconstruction For quantitative evaluations, we use the three
metrics as follows: 1) validity indicates the number of reconstructed molecules that are chemically valid,
2) exact match indicates the number of reconstructed molecules that are exactly same as the original
molecules, and 3) accuracy indicates the classification accuracy of atom types of all nodes.
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Table 3.4: Graph classification results on validation sets with standard deviations. All results are averaged over
10 di�erent runs. Best performance and its comparable results (p > 0.05) from the t-test are marked in blod.
Hyphen (-) denotes out-of-resources that take more than 10 days (See Figure 3.4 for the time e�ciency analysis).

Biochemical Domain Social Domain
D&D PROTEINS MUTAG HIV Tox21 ToxCast BBBP IMDB-B IMDB-M COLLAB

# graphs 1,178 1,113 188 41,127 7,831 8,576 2,039 1,000 1,500 5,000
# classes 2 2 2 2 12 617 2 2 3 3
Avg # nodes 284.32 39.06 17.93 25.51 18.57 18.78 24.06 19.77 13.00 74.49
GCN 76.17 ± 0.65 77.13 ± 0.44 76.56 ± 1.75 81.27 ± 0.92 78.80 ± 0.40 65.66 ± 0.40 93.35 ± 1.08 77.93 ± 0.28 54.29 ± 0.23 83.08 ± 0.13
GIN 76.85 ± 0.61 78.43 ± 0.45 94.44 ± 0.52 82.10 ± 1.01 78.20 ± 0.45 66.29 ± 0.42 94.64 ± 0.36 78.38 ± 0.26 54.04 ± 0.29 82.19 ± 0.25
Set2Set 76.32 ± 0.40 77.64 ± 0.41 79.72 ± 2.40 80.07 ± 0.93 79.13 ± 0.75 66.39 ± 0.49 91.89 ± 1.48 78.13 ± 0.30 54.39 ± 0.19 82.34 ± 0.23
SortPool 80.68 ± 0.59 77.92 ± 0.42 81.33 ± 3.00 81.17 ± 2.30 75.97 ± 0.76 64.26 ± 1.17 94.21 ± 1.04 77.46 ± 0.60 52.95 ± 0.62 80.58 ± 0.25
Di�Pool 81.33 ± 0.33 79.09 ± 0.36 87.94 ± 1.93 83.16 ± 0.44 80.02 ± 0.38 69.73 ± 0.79 96.32 ± 0.36 77.86 ± 0.39 54.77 ± 0.19 81.69 ± 0.31
SAGPool(G) 76.73 ± 0.80 77.01 ± 0.58 88.11 ± 1.21 80.55 ± 1.89 77.03 ± 0.76 65.51 ± 0.91 95.59 ± 1.22 78.09 ± 0.58 53.73 ± 0.42 81.91 ± 0.45
SAGPool(H) 79.56 ± 0.67 77.24 ± 0.56 86.06 ± 2.07 79.21 ± 1.50 75.36 ± 2.63 64.05 ± 0.83 93.05 ± 3.00 77.11 ± 0.46 53.49 ± 0.65 80.55 ± 0.56
TopKPool 78.54 ± 0.73 75.47 ± 0.90 75.06 ± 2.12 79.24 ± 1.84 75.06 ± 2.30 64.56 ± 0.56 93.31 ± 2.32 76.12 ± 0.79 52.75 ± 0.58 79.94 ± 0.86
MinCutPool 81.96 ± 0.39 79.23 ± 0.66 87.22 ± 1.72 83.12 ± 1.27 81.10 ± 0.42 69.09 ± 1.12 95.99 ± 0.47 77.76 ± 0.36 54.94 ± 0.19 83.37 ± 0.18
StructPool 82.56 ± 0.37 80.00 ± 0.27 91.50 ± 0.95 81.09 ± 1.26 79.61 ± 0.70 66.49 ± 1.59 95.18 ± 0.59 77.14 ± 0.31 54.13 ± 0.39 79.90 ± 0.18
ASAP 81.58 ± 0.38 78.71 ± 0.45 91.33± 0.65 79.80 ± 1.88 77.33 ± 1.34 63.82 ± 0.75 92.96 ± 1.09 77.89 ± 0.51 55.17 ± 0.33 82.11 ± 0.33
EdgePool 80.32 ± 0.44 79.61 ± 0.25 87.28± 1.18 81.84 ± 1.32 78.92 ± 0.29 66.21 ± 0.64 94.98 ± 0.62 77.50 ± 0.25 54.69 ± 0.40 -
HaarPool - - 68.22± 0.86 - - - 89.98 ± 0.58 76.72 ± 0.60 53.03 ± 0.14 -
GMT (Ours) 82.19 ± 0.40 80.01 ± 0.21 91.00 ± 0.82 83.54 ± 0.78 80.91 ± 0.41 69.77 ± 0.67 95.14 ± 0.48 78.43 ± 0.22 55.14 ± 0.25 83.37 ± 0.11

3.6.5 Experimental Details on Graph Generation

Common Implementation Details In the graph generation experiments, we replace the graph em-
bedding function f(G) from existing graph generation models to the proposed Graph Multiset Trans-
former (GMT), to evaluate the applicability of our model on generation tasks, as described in the
subsection 3.4.3 of the main paper. As baselines, we first use the original models with their implemen-
tations. Specifically, we use the MolGAN1 [116] for molecule generation, and Graph Logic Network
(GLN)2 [117] for retrosynthesis. For both experiments, we directly follow the experimental details of
original papers [116, 117] for a fair comparison. Furthermore, to compare our models with another strong
pooling method, we use the MinCutPool [83] as an additional baseline for generation tasks, since it shows
the best performance among baselines in the previous two classification and reconstruction tasks.

For MinCutPool, since it cannot directly compress the all n nodes into the 1 cluster to represent the
entire graph, we use the following trick to replace the simple pooling operation (e.g. sum or mean) with
it. We first condense the graph into the k clusters (k = 4) using one MinCutPool layer, and then average
the condensed nodes to get a single representation of the given graph. However, our proposed Graph
Multiset Transformer (GMT) can directly compress the all n nodes into the 1 node with one learnable
seed vector, by using the single GMPool1 block. In other words, we use the one GMPool1 to represent
the entire graph by replacing their simple pooling (e.g. sum or mean), in which we use the following
softmax activation function for computing attention weights:

w(QK
T )i,j =

exp(QiK
T

j
)

q
n

k=1 exp(QiK
T

k
)
. (3.14)

Implementation Details on Molecule Generation For the molecule generation experiment with
the MolGAN, we replace the average pooling in the discriminator with GMPool1. We use the QM9
dataset [121] following the original MolGAN paper [116]. To evaluate the models, we report the validity
of 13,319 generated molecules at the early stage of the MolGAN training, over 4 di�erent runs. As
depicted in Figure 3.8 of the main paper, each solid curve indicates the average validity of each model
with 4 di�erent runs, and the shaded area indicates the half of the standard deviation.

1
https://github.com/yongqyu/MolGAN-pytorch

2
https://github.com/Hanjun-Dai/GLN
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Table 3.6: Quantitative results of the graph reconstruction task on reconstructing the node features and the
adjacency matrix for synthetic graphs, with two di�erent minimization objectives and error calculation metrics:
X ≠ Xrec and A ≠ Arec. * indicates the model without using adjacency normalization.

Data: Grid Graph Ring Graph

Objective: minÎX ≠ XrecÎ minÎA ≠ ArecÎ minÎX ≠ XrecÎ minÎA ≠ ArecÎ

Error Calculation: ÎX ≠ XrecÎ ÎA ≠ ArecÎ ÎX ≠ XrecÎ ÎA ≠ ArecÎ ÎX ≠ XrecÎ ÎA ≠ ArecÎ ÎX ≠ XrecÎ ÎA ≠ ArecÎ

Di�Pool 0.0833 12110194 0.3908 0.0856 0.0032 617.7706 0.6208 0.0948
MinCutPool 0.0001 0.0092 1.2883 0.0051 0.0005 0.0424 0.5026 0.0128
MinCutPool* 0.0002 201.7619 2.0261 0.0616 0.0003 68.23 0.5211 0.0725
GMT (Ours) 0.0001 0.0102 0.2353 0.0084 0.0000 0.0331 0.5475 0.0324

Implementation Details on Retrosynthesis For the retrosynthesis experiment with the Graph
Logic Network (GLN), we replace the average pooling in the template and subgraph encoding functions
with GMPool1. We use the USPTO-50k dataset following the original paper [117]. For an evaluation
metric, we use the Top-k accuracy for both reaction class is not given and given cases, following the
original paper [117]. We reproduce all results in Table 3.3 with published codes from the original paper.

3.6.6 Additional Experimental Results

Validation Results on Graph Classification We additionally provide the graph classification re-
sults on validation sets. As shown in Table 3.4, the proposed GMT outperforms most baselines, or
achieves comparable performances to the best baseline results even in the validation sets. While val-
idation results can not directly measure the generalization performance of the model for unseen data,
these results further confirm that our method is powerful enough, compared to baselines. Regarding the
results of test sets on the graph classification task, please see Table 3.1 in the main paper.

Table 3.5: Graph classification results for
OGB test datasets with standard deviations.

Model HIV Tox21

Leaderboard
GCN 76.06 ± 0.97 75.29 ± 0.69
GIN 75.58 ± 1.40 74.91 ± 0.51

Reproduced
GCN 76.81 ± 1.01 75.04 ± 0.80
GIN 75.95 ± 1.35 73.27 ± 0.84

Ours GMT 77.56 ± 1.25 77.30 ± 0.59

Leaderboard Results on Graph Classification For a
fair comparison, we experiment with all baselines and our
models in the same setting, as described in the implementa-
tion details of Appendix 3.6.3. Specifically, we average the
results over 10 di�erent runs with the same hidden dimen-
sion (128, while leaderboard uses 300), and the same number
of message-passing layers (3, while leaderboard uses 5) with
10 di�erent seeds for all models. Therefore, the reproduced
results can be slightly di�erent from the leaderboard results, as shown in Table 3.5, since the leader-
board uses di�erent hyper-parameters with di�erent random seeds (See Hu et al. [109] for more details).
However, our reproduction results are almost the same as the leaderboard results, and sometimes out-
perform the leaderboard results (See the GCN results for the HIV dataset in Table 3.5). Therefore,
while we conduct all experiments under the same setting for a fair comparison, where specific hyperpa-
rameter choices are slightly di�erent from the leaderboard setting, these results indicate that there is no
significant di�erence between reproduced and leaderboard results.

Quantitative Results on Graph Reconstruction for Synthetic Graphs While we conduct ex-
periments on reconstructing node features on the given graph, to quantify the retained information on
the condensed nodes after pooling (See Section 3.4.2 for experiments on the graph reconstruction task),
we further reconstruct the adjacency matrix to see if the pooling layer can also condense the adjacency
structure without loss of information. The learning objective to minimize the discrepancy between the
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original adjacency matrix A and the reconstructed adjacency matrix A
rec with a cluster assignment

matrix C œ Rn◊k is defined as follows: minÎA ≠ A
recÎ, where A

rec = CA
pool

C
T

.

Then we design the following two experiments. First, pooling layers are trained to minimize the
objective in Section 3.4.2: minÎX ≠X

recÎ. After that, we measure the discrepancy between the original
and the reconstructed node features: ÎX≠X

recÎ, and also measure the discrepancy between the original
and the reconstructed adjacency matrix: ÎA≠A

recÎ. Second, pooling layers are trained to minimize the
objective described in the previous paragraph: minÎA≠A

recÎ, and then we measure the aforementioned
two discrepancies in the same way.

We experiment with synthetic grid and ring graphs, illustrated in Figure 3.10. Table 3.6 shows that
the error is large when the objective and the error metric are di�erent, which indicates that there is a
high discrepancy between the required information for condensing node and the required information
for condensing adjacency matrix. In other words, the compression for node and the compression for
adjacency matrix might be di�erently performed to reconstruct the whole graph information.

Also, Table 3.6 shows that there are some cases where there is no significant di�erence in the
calculated adjacency error (ÎA≠A

recÎ), when minimizing nodes discrepancies and minimizing adjacency
discrepancies (See 0.0331 and 0.0324 for the proposed GMT on the Ring Graph). Furthermore, calculated
errors for the adjacency matrix when minimizing adjacency discrepancies are generally larger than the
calculated errors for node features when minimizing nodes discrepancies. These results indicate that
the adjacency matrix is di�cult to reconstruct after pooling. This might be because the reconstructed
adjacency matrix should be further transformed from continuous values to discrete values (0 or 1 for the
undirected simple graph), while the reconstructed node features can be directly represented as continuous
values. We leave further reconstructing adjacency matrices and visualizing them as a future work.

Additional Examples for Molecule Reconstruction We visualize the additional examples for
molecule reconstruction on the ZINC dataset in Figure 3.11. Molecules on the left side indicate the
original molecule, where the transparent color denotes the assigned cluster for each node, which is
obtained by the cluster assignment matrix C with node (atom) representations in a graph (molecule)
(See Proposition 5 for more detail on generating the cluster assignment matrix). Also, molecules on the
right side indicate the reconstructed molecules with failure cases denoted as a red dotted circle.

As visualized in Figure 3.11, we can see that the same atom or the similarly connected atoms obtain
the same cluster (color). For example, the atom type O mostly obtains the yellow cluster, and the atom
type F obtains the green cluster. Furthermore, ring-shaped substructures that do not contain O or N
mostly receive the blue cluster, whereas ring-shaped substructures that contain O and N receive the
green and yellow clusters respectively.
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Figure 3.11: Molecule Reconstruction Examples (Left): Original molecules with the assigned
cluster on each node represented as color, where cluster is generated from Graph Multiset Pooling (GM-
Pool). (Right): Reconstructed molecules. Red dotted circle indicates the incorrect atom prediction.
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Chapter 4. Concluding Remark

In this thesis, we focus on the current limitations of node-level graph neural networks (GNNs) for
representing unseen nodes and entire graphs. Specifically, in Chapter 2, we aim at accurately representing
unseen nodes that are not seen during training but appear at test time. To this end, we first formally
define a problem of unseen nodes on a real-world evolving graph, which we refer to as few-shot out-of-
graph link prediction, and then propose the transductive meta-learning framework that simulates unseen
entities during training to handle newly emerged entities at test time. On the other hand, in Chapter 3,
we aim at obtaining entire graph representations that are distinct across di�erent graphs. To this end, we
propose a transformer-based graph pooling method that not only captures interaction among all nodes,
but also is approximated to be at most as powerful as the Weisfeiler-Lehman (WL) graph isomorphism
test. We evaluate the performance of our models on tasks for unseen nodes and entire graphs, and show
that the proposed methods can accurately represent both of them, while node-level GNNs fail to do so.

We believe our models largely contribute to learning unobserved nodes and whole graphs more
accurately, and bring huge potential impacts in application to real-world graphs, for instance, evolving
graphs – knowledge graph, social network, and communication network – that grow with new nodes
over time. Also, ours could be broadly used to model the entire graph, such as representing a molecular
graph, analyzing a social network, and detecting an attack in a cybernetwork. However, there are still
remaining challenges that hurt the performance of GNNs on graph-related tasks. First, in a data-level
perspective, graphs, that are automatically constructed from the machine or even manually annotated
from the human, are inaccurate (i.e., there are missing links, and even available connections between
nodes are often incorrect). Thus, we further need to consider the accurateness of the predicted link, and
even develop the method for cleaning out the noise on the constructed graph. Also, in terms of machine
learning schemes, we should accurately reflect all sources of information on the graph, such as features
of both nodes and edges, and their underlying structural roles. Furthermore, in an application-level
perspective, it is required to explore the data – whose underlying structure is a graph, yet getting less
attention to model with GNNs, such as neural networks – and the corresponding method for exploiting
such particular data. For the rest, if an obtained graph representation is satisfactorily considered to be
accurate, methods of fusing the graph knowledge into other domains (e.g., computer vision and natural
language understanding) would be hopeful to further develop.
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[51] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Com-
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[81] James Atwood and Don Towsley. Di�usion-convolutional neural networks. In Advances in Neural
Information Processing Systems 29: Annual Conference on Neural Information Processing Systems
2016, December 5-10, 2016, Barcelona, Spain, pages 1993–2001, 2016.

[82] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In Proceedings of the
36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, volume 97 of Proceedings of Machine Learning Research, pages 3734–3743. PMLR,
2019.

[83] Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering with graph
neural networks for graph pooling. arXiv preprint, arXiv:1907.00481, 2019.

[84] Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First
Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Sym-
posium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA,
January 27 - February 1, 2019, pages 4602–4609. AAAI Press, 2019.

[85] Hongyang Gao and Shuiwang Ji. Graph u-nets. In Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of
Proceedings of Machine Learning Research, pages 2083–2092. PMLR, 2019.

51



[86] Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. In Proceedings
of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings of Machine Learning Research, pages 7134–
7143. PMLR, 2019.

[87] Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou
Huang. GROVER: self-supervised message passing transformer on large-scale molecular data.
arXiv preprint arXiv:2007.02835, 2020.

[88] David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Tim-
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Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages 5449–
5458. PMLR, 2018.

[120] Vijay Prakash Dwivedi, Chaitanya K. Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks. arXiv preprint, arXiv:2003.00982, 2020.

[121] R. Ramakrishnan, Pavlo O. Dral, Matthias Rupp, and O. A. von Lilienfeld. Quantum chemistry
structures and properties of 134 kilo molecules. Scientific Data, 1, 2014.

54



Acknowledgment

I first would like to thank my advisor, Prof. Sung Ju Hwang, for providing insightful and valuable
ideas with a great passion for our research. Without his supports, all my research accomplishments
would not have been possible. I always look up to him as a remarkable scientist, and want to improve
my research skill set like him. I also would like to thank my thesis committee members Prof. Eunho
Yang, and Prof. Kijung Shin for their constructive and thoughtful comments on my research.

My sincere thanks also go out to my labmates, especially to my coauthors and collaborators, who
have influenced my daily growth. Thanks to Dong Bok for guiding me when I first came into our lab, to
Minki for sharing valuable wisdom during any discussion that makes our research more solid, to Jaehyeong
for incredibly hard work that inspires me a lot with great friendship, to Dongki for sharing attitudes
of never giving up, and to Seul for sharing insight on biochemistry. Also, I want to thank Wonyong,
Hayeon, Gun, and Eunyoung, with whom I got an opportunity to learn how to collaborate together in
large-scale research. Most of all, every labmate – from current: Jaehong, Haebeom, Jin Myung, Hayeon,
Bruno, Minseon, Taewook, Wonyong, Byungjoo, Minki, Dongbok, Je�, Jaehyeong, Minyoung, Seanie,
Dongchan, Seul, Hyunsu, Geon, Sunil, Dongki, and Jongha, to former: Moonsu, Hyewon, Eunyoung,
Jaewoong, Divyam, Wuhyun, and Jeongun – makes my life in a school an enjoyable and unforgettable
one. Thank you for giving generous help when I needed it.

I also want to thank external collaborators. Thanks to DMIS lab members in my undergraduate
school, especially to Prof. Jaewoo Kang for providing me the chance to conduct my first research but also
thoughtfully supporting it, to Hyunjae and Yookyung for our collaboration work even when I left there,
and to Donghyeon and Buru for mentoring my youngest time of research journey. I am also thankful to
Prof. Jong C. Park for providing constructive feedback, as well as to Soyeong, Chaehun and Sukmin for
sharing valuable ideas with intense discussions, on our research collaboration.

Before and even after starting my academic journey, there are great teachers, mentors and programs,
that support my studies of computer science and engineering, and encourage me to pursue a Master’s
degree of artificial intelligence. Thanks to the Samsung Dream Scholarship Foundation for supporting
many aspects of my studies toward a researcher, to the Microsoft Student Partner program with Mr.
Minsoo Bae and Ms. Eunji Kim from Microsoft for providing me the chance of learning computer science
on a global scale, to the SW Maestro program from which I decide to study artificial intelligence, to
Prof. Heejo Lee for guiding me in the programs of KUICS and Inc0gnito, therein always asking about
what I should pursue in the future, to Mr. Kwangjae Jang for encouraging me to choose the major of
computer science and engineering.

Beyond my academic life, I owe my wonderful time to my friends outside the lab too. Although there
are too many to list individually, thanks to all my friends for helping to take the stress out of my graduate
school, and cheering up my academic journey – especially friends from the KU Honam community, to
the KU Computer Science and Engineering Department, to the KU WoonWha volunteering club, to the
Samsung Dream Scholarship Foundation, to the Microsoft Student Partner program. Special thanks to
Soyeong for being a best friend, as well as enriching my life.

Last but not least, I would like to thank my family – my father Cheonseok Baek, my mother Miran
Jeong, and my younger sister Jina Baek – for their endless support and love.

55



Curriculum Vitae

Name : Jinheon Baek

Date of Birth : July 16, 1997

Educations

2020. 3. – 2022. 2. M.S. in Artificial Intelligence, KAIST

2016. 3. – 2020. 2. B.S. in Computer Science and Engineering, Korea University
B.E. in Software Technology and Enterprise Program, Korea University

Publications

1. M. Kang*, J. Baek*, and S. J. Hwang. KALA: Knowledge-Augmented Language Model Adapta-
tion. In preparation. (*: equal contribution)

2. S. Jeong, J. Baek, S. Cho, S. J. Hwang, and J. C. Park. Augmenting Document Representations
for Dense Retrieval with Interpolation and Perturbation. In preparation.

3. J. Jo*, J. Baek*, S. Lee*, D. Kim, M. Kang, and S. J. Hwang. Edge Representation Learning with
Hypergraphs. Conference on Neural Information Processing Systems (NeurIPS), 2021. (*: equal
contribution)

4. W. Jeong*, H. Lee*, G. Park*, E. Hyung, J. Baek, and S. J. Hwang. Task-Adaptive Neural Network
Retrieval with Meta-Contrastive Learning. Conference on Neural Information Processing Systems
(NeurIPS), 2021. (Spotlight Presentation) (*: equal contribution)

5. S. Jeong, J. Baek, C. Park, and J. C. Park. Unsupervised Document Expansion for Informa-
tion Retrieval with Stochastic Text Generation. Scholarly Document Processing at Conference of
the North American Chapter of the Association for Computational Linguistics (SDP@NAACL),
2021. (Oral Presentation)

6. J. Baek*, M. Kang*, and S. J. Hwang. Accurate Learning of Graph Representations with Graph
Multiset Pooling. International Conference on Learning Representations (ICLR), 2021. (*: equal
contribution)

7. H. Kim*, Y. Koh*, J. Baek, and J. Kang. Exploring The Spatial Reasoning Ability of Neural
Models in Human IQ Tests. Neural Networks, 2021. (*: equal contribution)

8. J. Baek, D. B. Lee, and S. J. Hwang. Learning to Extrapolate Knowledge: Transductive Few-shot
Out-of-Graph Link Prediction. Conference on Neural Information Processing Systems (NeurIPS),
2020. (*: equal contribution)

56


	 Contents 
	 List of Tables 
	 List of Figures 
	Introduction 
	Accurate Learning of Unseen Node Representations  
	Introduction
	Related Work
	Few-Shot Out-of-Graph Link Prediction
	Learning to Extrapolate Knowledge with Graph Extrapolation Networks
	Experiment
	Knowledge Graph Completion
	Drug-Drug Interaction

	Conclusion
	Appendix
	Experimental Setup 
	Meta-learning for Long-tail Tasks 
	Additional Experimental Results 
	Examples 
	Discussion on Inductive and Transductive Schemes 


	Accurate Learning of Entire Graph Representations  
	Introduction
	Related Work
	Graph Multiset Pooling
	Preliminaries
	Graph Multiset Transformer
	Connection with Weisfeiler-Lehman Isomorphism Test 
	Connection with Node Clustering Approaches 

	Experiment
	Graph Classification
	Graph Reconstruction 
	Graph Generation 

	Conclusion
	Appendix
	Details for Graph Multiset Transformer Components 
	Baselines and Our Model 
	Experimental Details on Graph Classification
	Experimental Details on Graph Reconstruction 
	Experimental Details on Graph Generation 
	Additional Experimental Results


	Concluding Remark 
	Acknowledgments
	Curriculum Vitae

